Какое значение имеет для растения корень поглощает углекислый газ

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Вы знаете, как питаются комнатные мухи? Растения из земли примерно так же.

Для тех, кто не в курсе: У личинок мух внекишечное пищеварение. Они выделяют в окружающую среду пищеварительный сок, а затем поглощают переваренную пищу. Частично такой способ сохраняется и у взрослых особей. У растений примерно так же осуществляется корневое питание из земли.

Про фотосинтез более-менее понятно. В школе проходили. Растения преобразуют энергию видимого света в энергию химических реакций, в том числе превращение углекислого газа и воды в органические соединения (сахара, крахмал, аминокислоты и др.).

Но только органикой растения жить не могут, им нужны ещё и минеральные вещества из почвы. Тут и подключаются корни, вместе с листьями они обеспечивают растению полноценное питание.

Информация о корневых выделениях стала для меня откровением

Конечно, я знала, что корни всасывают, поглощают из почвы влагу. В ней могут быть растворены те или иные элементы питания. Причем питают растения не толстые основные корни, а мелкие и тонкие отростки-волоски на основных корнях. Их так и называют - питающие, всасывающие корешки и даже волоски. Вот почему так важно при пересадке не повредить корни. Чем меньше мы покалечим этих мелких ворсинок, тем быстрее растение начнет питаться.

Но о том, что корни выделяют в почву некий секрет, слизь, я узнала всего года два назад. Оказывается, наши растения не няшки, лапушки, "бедненькие, мы не растворили для них суперфосфат в кипятке, и они голодные". Нет! Они те еще монстры, без нас способны растворить твердые частицы.

Помимо всасывания из земли воды и растворенных в ней солей, корни ещё и выделяют в почву целый комплекс веществ, чуть ли не пищеварительный сок.

Что выделяют в землю корни и для чего?

Оказывается растение - это сложнейший организм, в котором все продумано.

Корни выделяют в почву:

  • СО2, углекислый газ, выходит из корней в процессе их дыхания. При взаимодействии с почвенной влагой из него образуется угольная кислота. Вот вам и растворитель для добычи и усвоения различных микро- и макроэлементов. Это одна из основных функций корневых выделений: повышать растворимость и доступность для питания фосфатов, сульфатов, карбонатов, силикатов.
  • Соединения фосфора, калия, магния и кальция. Растения способны выделять в почву через корни избыток этих элементов, а потом при необходимости их всасывать назад.
  • Токсины и органику в виде сахаров и кислот. Корневые выделения каждого растения уникальны. Они способны подкармливать полезных бактерий и угнетать вредных. Таким образом корневые выделения создают в почве благоприятную микрофлору. То же самое происходит с соседствующими растениями. Корневые выделения будут угнетать их или, наоборот, способствовать симбиозу. Все же читали про хороших и плохих предшественников и соседей на грядках?

Состав корневых выделений, как они влияют на почву и вещества в ней до сих пор изучают. В частности считается, что растения способны переводить в растворимую форму даже железо! Так и знайте, если у растения дефицит железа, развивается хлороз, оно в это время активно наращивает корни для поиска и добычи недостающего элемента.


Экологическая обстановка в мире давно уже перестала радовать земные экосистемы. Множество заводов, без которых человечеству просто не обойтись, выбрасывают ежегодно в атмосферу около 10 миллиардов тон углекислого газа. Многие относятся к этому скептически, утверждая, что количество диоксида углерода не меняется в экосистеме Земли.

На деле, проблема не столько в превышении количества CO2, сколько в нарушении обмена веществ в экосистеме Земли. До начала промышленной деятельности человека углекислый газ, при взаимодействии с водой выпадал в осадок в виде карбонатов, потом переходил в почву, откуда служил для многих растений и водорослей удобрениями. Но это процесс, растянутый на десятки и сотни лет. Человечество же использует запасы миллионов лет в сокращенные сроки, перерабатывая твердые формы углерода в виде нефти и угля. При сжигании этих ископаемых в механизмах и на заводах происходит выброс диоксида углерода в воздух.

Выбросы CO2 в вечернее время

Единственный выход это воспользоваться другим механизмом и размножить флору. Фотосинтез — это естественный механизм, предусмотренный природой для переработки CO2. Сегодня эта система нужна, как никогда ранее. Производство диоксида углерода растет и соизмеримо выбросам должно расти количество лесов, джунглей, парков и искусственных насаждений. Растение поглощает углекислый газ и выделяет кислород.

Дневное дыхание растений

Дневное дыхание связано с двумя процессами: непосредственно дыханием и фотосинтезом. Процесс дыхания, как и у человека, связан с окислением органических соединений и выделением диоксида углерода, воды и энергии. Вместо человеческих легких выступает вся поверхность растения. Химическая формула, описывающая реакции в процессе дыхания растений:

Любое дерево способно дышать всей поверхностью, даже поверхностью плодов. Но наиболее активно процесс дыхания происходит через устья листа, откуда и попадает по межклеточному пространству большая часть необходимых газов.

Устьице листа

Если речь идет о дневном времени суток, то дыхание не столь заметно, как ночью. Поскольку работа растения направлена большей частью на постоянное запасание энергии в виде органических соединений (глюкозы). Попадающий в листья газ, при содействии воды и энергии солнечного света в хлоропластах превращается в глюкозу, которую организм запасает для дальнейшего использования. Собственно дыхание и является этим дальнейшим использованием.

Запасенная глюкоза, с помощью воды и кислорода разлагается на молекулы аденозинтрифосфорной кислоты (АТФ), углекислый газ и водород. АТФ – это твердая энергия. Биологический аккумулятор клеток, который обеспечивает энергетическими запасами все живое на планете. Позднее эти запасы будут использованы в жизнедеятельности каждой молекулы организма.

Кажется, что образуется замкнутый круг: фотосинтез происходит с образованием глюкозы и кислорода, но что толку, если потом в результате дыхания растений выделяется диоксид углерода и АТФ. А энергию растения расходуют лично на себя, ничего не оставляя другим. Но весь вопрос в количестве. Далеко не весь кислород, который образуется во время фотосинтеза, поглощается организмом во время дыхания. Растения производят в разы больше, чем поглощают. Может этим они и отличаются от человека. А все энергетические запасы растений рано или поздно переходят в запасы животных или человека. Так растения отдают все свои накопления ради существования экосистемы Земли.

В среднем 1 гектар лесов ежегодно выделяет 4 тонны кислорода и потребляет 5 тонн углекислого газа. Человек в день выдыхает до 1 килограмма диоксида углерода, в год — 365 кг. Следовательно, 1 гектар леса поглощает углекислоту, которую выдыхают 13 человек.

Ночное дыхание растений

Процесс дыхания растений мало чем отличается от дыхания животных и человека. Есть и ночное дыхание. Это явление было открыто Отто Варбургом в начале XX века. Ночью света нет, а значит нет и энергии для фотосинтеза. Растения перестают вырабатывать O2, но не могут перестать дышать. Кислород поглощается, а углекислый газ все так же продолжает выделяться.

Белки, жиры и углеводы, запасенные в процессе жизнедеятельности днем, благодаря циклу Кресса превращаются в углекислый газ, молекулы АТФ и водород.

АТФ расходуются на дальнейшие нужды, углекислый газ уходит в атмосферу по устьицам, а вот водород окисляется до воды. Растение не может позволить себе сбрасывать водород в атмосферу, поскольку легко может погибнуть от этого, поэтому происходит частичный выброс паров воды. Большая часть организма растения – вода. Она нужна во всех процессах, включая дневное и ночное дыхание. Окисленный водород будет использован вновь в следующих реакциях.

Дыхание растения и фотосинтез

Именно из-за ночного дыхания не рекомендуется ставить цветы в спальнях. Это увеличивает содержание углекислоты в комнате. Что никак не скажется на цветах, но будет чувствительно для человека.

Для дыхания растений существует пороговое значение содержания кислорода. При увеличении содержания О2 в воздухе до 5-8 процентов – интенсивность дыхания у растений скачкообразно растет. Но после это рост практически прекращается. Сейчас кислорода в воздухе около 21 процента. А значит, растениям еще долго не нужно будет о нем беспокоиться.

В природе есть еще одно интересное явление, названное САМ — фотосинтезом. Это явление характерно для пустынных цветов и растений. В вечной погоне за сохранением водных ресурсов, эти растения приспособились к проведению фотосинтеза в ночь.

Водоросли и CO2

Под водорослями понимают все растения, находящиеся под водой и не имеющие корня. Интенсивнее всего, из водорослей, поглощает углекислоту одноклеточные водоросли — фитопланктон. В основном все водоросли дышат растворенным в воде кислородом, за исключением нескольких видов, осуществляющих бескислородный фотосинтез. Те в качестве акцептора электронов при дыхании используют элементную серу.


Получение энергии в группе цианобактерий

Фитопланктон обитает в верхних слоях воды, поскольку ему требуется большое количество солнечной энергии для фотосинтеза. При наличии в воде растворенного углекислого газа фитопланктон осуществляет фотосинтезирующий процесс, побочным продуктом которого является кислород. Большим отличием этих водорослей от наземных растений является количество производимого кислорода. За один цикл фотосинтеза фитопланктон производит кислорода в 3-4 раза больше собственного веса. Неудивительно, что при таких показателях 70 процентов атмосферного кислорода произведено в воде.

Фотосинтез

О фотосинтезе уже шла речь в этой статье. Стоит рассмотреть его более подробно. Как уже говорилось ранее, фотосинтез происходит в хлоропластах. За две фазы происходит процесс образования новой молекулы глюкозы, которая после используется в химических процессах растения.

Во время световой фазы используется энергия солнца. Под ее действием вода отдает электрон и распадается на положительно заряженные частицы водорода (Н) и радикалы гидроксида (ОН). После этого оставшиеся частицы ОН образуют воду и кислород, который сразу же удаляется в атмосферу. В хлоропласте остались электроны и положительно заряженные частицы водорода. Эти частицы накапливаются на различных сторонах мембраны тилакоида (одной из частей хлоропластов), из-за разницы концентраций протоны из большей концентрации стремятся проникнуть через мембрану к протонам с меньшей концентрацией. Когда разность потенциалов между ними достигнет 200 миллиВольт, произойдет разряд и молекула АТФ зарядится, а никотинамидадениндинуклеотидфосфат (сокращенно НАДФ) восстановится до НАДФ*Н. Эти два компонента и будут необходимы в темновой фазе фотосинтеза.

Схематический процесс фотосинтеза

Схематический процесс фотосинтеза

В теневой фазе АТФ является аккумулятором, а НАДФ курьером, который доставляет в другую часть хлоропласта протон Н. К тому же растению нужен будет СО2, который послужит основой для будущей молекулы глюкозы. В итоге химических реакций из молекул СО2 и водорода, с помощью энергии из АТФ получается глюкоза С6Н12О6, которая и является первым питательным веществом во всех пищевых цепочках Земли.

Заключение

Хлоропласты — устройство для сбора солнечной энергии возрастом 3 миллиарда лет. Эта микроскопическая солнечная батарея дает жизнь лесам, полям, планктону морей, а также животным включая нас с вами.

Биосфера, работающая на солнечной энергии, собирает и обрабатывает в 6 раз больше энергии, чем вся человеческая цивилизация. Сейчас мы понимаем, как фотосинтез работает на химическом уровне. Мы способны повторить этот процесс лабораторных условиях, но у нас это получается хуже, чем у растений. Неудивительно, ведь природа занималась этим миллиарды лет, а мы только что начали. Но если бы мы смогли раскрыть тайны фотосинтеза, все источники энергии, от которых мы зависим сегодня — уголь, нефть, природный газ ушли в прошлое. Фотосинтез — идеальная экологическая энергия, она не загрязняет воздух, не даёт выбросов углерода. Искусственный фотосинтез в достаточно больших масштабах позволил бы снизить парниковый эффект, ведущий к опасному изменению климата …

в незнакомом городе передвигайтесь с картой, которая позволит время; по той же причине побольше обращайтесь к разным людям, когда вы ищите какой-нибудь адрес, потому что единственный ответ может быть неправильным;

не показывайте слишком ясно, что вы турист; прогуливайтесь с местной газетой под мышкой, смешивайтесь с местными жителями;

будьте внимательны к подворотням и плохо освещенным углам, стараясь по возможности их избегать;

если какой-нибудь автомобилист спрашивает совета, дайте его быстро и четко или извинитесь, что вы не знаете этого места, но не вызывайтесь сопровождать незнакомого человека;

избегайте садиться в пустой автобус, а если вам все-таки приходится делать это, садитесь ближе к водителю;

когда вы передвигаетесь в городе, всегда удобно иметь в распоряжении несколько мелких монет и билетов на городской транспорт. избегайте мест большого скопления людей: рынки, толпы, очереди и т.д. именно в толпе легко столкнуться с тем, кто крадет сумки и бумажники. сами вы этого даже не заметите из-за нехватки времени. вот еще несколько советов, которые, хотя они и очевидны, полезно не забывать:

обращайтесь в учреждения для оплаты какой-либо квитанции или для продления срока действия какого-либо документа не в час пик и не в последние дни перед окончанием срока действия документа;

Дыхание растений представляет собой серию ферментативных реакций, которые позволяют растениям превращать накопленную энергию углеводов, вырабатываемых в процессе фотосинтеза, в форму энергии, которую они могут использовать для ускорения роста и метаболических процессов.

Посредством фотосинтеза растения превращают солнечный свет в потенциальную энергию в виде химических связей углеводных молекул. Однако, чтобы использовать эту накопленную энергию для обеспечения жизненно важных процессов – от роста и размножения до заживления поврежденных структур – растения должны преобразовать ее в пригодную для использования форму. Это преобразование происходит посредством клеточного дыхания, основного биохимического пути, также обнаруженного у животных и других организмов.


Как животные и люди, растения тоже дышат

Растения нуждаются в кислороде для дыхания, которые в свою очередь выделяют углекислый газ. В отличие от животных и людей, растения не имеют каких-либо специализированных структур для газообразного обмена и по сравнению с животными и людьми корни растений, стебли и листья дышат с очень низкой скоростью.

Как происходит дыхание растений?

Все зеленые растения дышат через процесс клеточного дыхания.

Дыхание состоит из сложной серии химических реакций. На первом этапе глюкоза окисляется, и химическая потенциальная энергия ее связей передается химическим потенциальным связям молекулы АТФ (аденозинтрифосфата). Затем молекула АТФ может транспортироваться по всей клетке, где ее накопленная энергия используется для выполнения различных задач внутри клетки. Этот процесс выделяет углекислый газ и воду.

Что происходит в клетках растений при дыхании?

Растения дышат на протяжении всей своей жизни, так как клетка растения требует энергии для своего выживания. Но растения не дышат, как люди и животные, они дышат через процесс, называемый клеточным дыханием.

Клеточное дыхание у растений – это процесс, используемый растениями для преобразования питательных веществ, полученных из почвы, в энергию, которая питает клеточную деятельность растений.

Глюкоза, образующаяся в процессе фотосинтеза, распространяется вокруг растения в виде растворимых сахаров и дает энергию клеткам растения во время дыхания. Первой стадией дыхания является гликолиз, который расщепляет молекулу глюкозы на две меньшие молекулы, называемые пируватом, и выделяет небольшое количество энергии АТФ (аденозинтрифосфат). Эта стадия (анаэробное дыхание) не нуждается в кислороде.

На втором этапе молекулы пирувата реорганизуются и снова сливаются в цикле. В то время как молекулы реорганизуются, образуется углекислый газ, а электроны удаляются и помещаются в систему переноса электронов, которая (как и при фотосинтезе) производит много АТФ для растения, чтобы использовать его для роста и размножения. Эта стадия (аэробное дыхание) действительно нуждается в кислороде.

Результатом клеточного дыхания является то, что растение поглощает глюкозу и кислород, выделяет углекислый газ и воду и выделяет энергию. Растения дышат в любое время дня и ночи, потому что их клетки нуждаются в постоянном источнике энергии, чтобы остаться в живых. Помимо того, что растение используется для выделения энергии посредством дыхания, глюкоза, образующаяся в процессе фотосинтеза, превращается в крахмал, жиры и масла для хранения и используется для производства целлюлозы для роста и регенерации клеточных стенок и белков.

Какие условия необходимы для дыхания растений?

Дыхание состоит из ряда реакций, которые происходят главным образом в митохондриях растительных клеток . В дополнение к типу растений, несколько факторов окружающей среды влияют на скорость дыхания растительной клетки.

Возраст ткани / Стадия жизни

У более молодой ткани частота дыхания выше, чем у более старой. Таким образом, верхушка корня и молодые листья имеют более высокую частоту дыхания, чем более старые корневые сегменты и листья.

Когда семя впервые впитывает воду, частота дыхания клеток быстро возрастает, но выравнивается примерно через 20 минут.

Созревшие плоды вызывают всплеск дыхательной активности, который достигает кульминации, когда плоды достигают максимальной зрелости.

Температура

Частота дыхания в растительной клетке уменьшается при понижении температуры до тех пор, пока дыхание почти или полностью не остановится при низких температурах. Дыхание увеличивается с ростом температуры, пока не будут достигнуты очень высокие температуры, что приведет к ухудшению состояния тканей.

Температура сильно влияет на дыхание для поддержания (гораздо больше, чем клетки, предназначенные для роста растений). У растений в умеренном климате частота дыхания зимой значительно ниже, чем в теплое лето.

Частоту дыхания фруктов можно контролировать, храня фрукты в прохладных, сухих местах. Более низкие температуры хранения могут замедлить дыхание и созревание фруктов.

Кислород

Дыхание замедляется с уменьшением доступного кислорода. В условиях, когда кислорода нет, как, например, в плохо дренируемой почве, происходит анаэробное дыхание (брожение). Анаэробное дыхание приводит к образованию углекислого газа, некоторого количества энергии и этанола. Этот тип дыхания также используется для создания спиртов.

Частота дыхания для большинства растений достигает пика при нормальном уровне кислорода в атмосфере.

Если, например, корни дерева затоплены в течение длительных периодов времени, они не могут поглощать кислород и преобразовывать глюкозу для поддержания клеточных метаболических процессов. В результате заболачивание и чрезмерное орошение могут лишить корни кислорода, убить корневую ткань, повредить деревья и снизить урожайность.

Углекислый газ

Двуокись углерода, один из отходов дыхания, также влияетелен. Чем выше концентрация углекислого газа, тем ниже частота дыхания.

Повреждения

Дыхание усиливается как непосредственно зараженными, так и окружающими клетками, когда ткань растения повреждена или заражена. Часто, когда в яблоке есть червячная дыра, маленький коричневый синяк окружает его – это указывает на усиление дыхания в области вокруг поврежденных клеток.

Недостаток воды

Сухая ткань имеет более низкую частоту дыхания, чем гидратированная. Хотя засуха оказывает гораздо большее влияние на процесс фотосинтеза в растительных клетках, недостаток доступной воды также отрицательно влияет на дыхание.

Доступные сахара

Листья верхнего купола часто видят более высокие частоты дыхания.

Увеличение доступных сахаров в результате фотосинтеза обычно приводит к увеличению частоты дыхания. Частота дыхания в листьях верхнего купола будет выше, чем в листьях нижнего купола, потому что верхушки производят больше сахара.

Процессы, происходящие при дыхании растений

Во время дыхания в разных частях растений происходит очень мало газообмена. Поэтому каждая часть заботится о своих собственных потребностях в энергии.


Корни, стебли и листья растений обмениваются газами для дыхания отдельно. Как мы все знаем, листья имеют крошечные поры, называемые устьицами, которые используются для обмена газов. Кислород, всасываемый через устьицы, используется клетками в листьях для расщепления глюкозы на углекислый газ и воду.

Дыхание в корнях

Корни, подземная часть растений поглощает воздух из воздушных пространств, присутствующих между частицами почвы. Таким образом, кислород, поглощаемый через корни, используется для высвобождения энергии, которая впоследствии используется для транспортировки минералов и солей из почвы.

Дыхание в стеблях

В случае стебля воздух рассеивается в устьицах и проходит через различные части клетки для дыхания. Диоксид углерода, образующийся на этой стадии, также диффундирует через устьица. У высших или древесных растений газообразный обмен осуществляется чечевицами.

Дыхание в листьях

Листья содержат крошечные поры, называемые устьицами. Обмен газов происходит через устьица в процессе диффузии. Каждая стома контролируется ячейками охраны. Открытие и закрытие стомы помогают в обмене газами между атмосферой и внутренней частью листьев.

Связь дыхания и фотосинтеза

Внутри листа есть несколько структур, которые играют важную роль в движении питательных веществ и воды по всему растению.

Листья содержат воду, которая необходима для преобразования световой энергии в глюкозу посредством фотосинтеза. Листья имеют две структуры, которые сводят к минимуму потерю воды, кутикулу и устьица. Кутикулы являются восковым покрытием на верхнюю и нижнюю часть листьев, которые предотвращают испарение воды в атмосферу.

Хотя кутикула обеспечивает важную защиту от чрезмерной потери воды, листья не могут быть непроницаемыми, поскольку они также должны пропускать углекислый газ (для использования при фотосинтезе) и кислород. Эти газы попадают в лист и выходят из него через отверстия на нижней стороне, называемые устьицами. После того, как углекислый газ попадает в лист через устьицы, он попадает в клетки мезофилла, где происходит фотосинтез и строится глюкоза.

Связь между фотосинтезом и клеточным дыханием такова, что продукты одной системы являются реагентами другой. Фотосинтез включает использование энергии солнечного света, воды и углекислого газа для производства глюкозы и кислорода. Клеточное дыхание использует глюкозу и кислород для производства углекислого газа и воды.

Люди, животные и растения зависят от цикла клеточного дыхания и фотосинтеза для выживания. Кислород, вырабатываемый растениями во время фотосинтеза, – это то, что люди и животные вдыхают, чтобы кровь транспортировалась в клетки для дыхания. Углекислый газ, образующийся во время дыхания, выделяется из организма и поглощается растениями, чтобы помочь обеспечить энергию, необходимую для роста и развития. Это бесконечный цикл, который поддерживает жизнь на земле.

Процесс фотосинтеза используется растениями и другими фотосинтезирующими организмами для производства энергии, тогда как процесс клеточного дыхания расщепляет энергию для использования. Несмотря на различия между этими двумя процессами, есть некоторые сходства.

Например, оба процесса синтезируют и используют АТФ, универсальную энергию.

  • В процессе фотосинтеза АТФ производится с помощью энергии света (фотофосфорилирования) и используется для создания органических молекул
  • При клеточном дыхании АТФ образуется путем расщепления органических молекул (окислительное фосфорилирование)

Относительные скорости фотосинтеза, которые производят молекулы газа и дыхания, влияют на общую продуктивность растений. Там, где активность фотосинтеза превышает дыхание, рост растений протекает на высоком уровне. Там, где дыхание превышает фотосинтез, рост замедляется.


И фотосинтез, и дыхание увеличиваются с повышением температуры, но в определенный момент скорость фотосинтеза выравнивается, в то время как частота дыхания продолжает расти. Это может привести к истощению накопленной энергии. Чистая первичная продуктивность – количество биомассы, созданной зелеными растениями. Она может использоваться для остальной части пищевой цепи – представляет собой баланс фотосинтеза и дыхания, рассчитанный путем вычитания энергии, потерянной для дыхания, из общей химической энергии, производимой фотосинтезом.

Значение дыхания в жизни растений

Растения дышат, но они преимущественно участвуют в процессе, называемом фотосинтезом. Это совпадает с характеристиками дыхания, за исключением соответствующих химических реакций, протекающих в обратном направлении.

Поскольку дыхание и фотосинтез дополняют друг друга во всех экосистемах планеты, дыхание имеет такое же жизненно важное значение для растений, как и для организмов, которые напрямую зависят от дыхания.

Углекислый газ является фактором для фотосинтеза. Животные вдыхают кислород и выдыхают углекислый газ. Растения потребляют углекислый газ и выдыхают кислород.

Таким образом, животные дают растениям углекислый газ, тогда как растения дают животному кислород.

Существует равновесие между кислородом и углекислым газом между животными и растениями. Без одного другой не выживет долго.

Читайте также: