Каким будет расщепление по фенотипу гибридов от скрещивания двух гетерозиготных растений

Добавил пользователь Morpheus
Обновлено: 19.09.2024

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания


Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно - 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Таблица 1. Количественные закономерности расщепленияв гибридном потомстве
при различных типах скрещиваний

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме "Законы Менделя":

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":


Задания Д8 № 14237

Установите соответствие между соотношением фенотипов и типом скрещивания, для которого оно характерно.

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Моногибридное скрещивание — скрещивание особей, отличающихся по одной паре признаков.

Дигибридное скрещивание — скрещивание особей, отличающихся по двум парам признаков.

(А) — расщепление по фенотипу 1:2:1 характерно для моногибридного скрещивания типа Aa x Aa при неполном доминировании (аллель A не полностью доминирует над аллелью a);

(Б) — расщепление по фенотипу 9:3:3:1 — для дигибридного скрещивания при независимом наследовании (гены не сцеплены) признаков типа AaBb x AaBb;

(В) — расщепление по фенотипу 1:1:1:1 — для дигибридного анализирующего скрещивания типа AaBb x aabb;

(Г) — расщепление по фенотипу 3:1 характерно для моногибридного скрещивания типа Aa x Aa с полным доминированием (аллель A полностью доминирует над аллелью a).


Задание 28 № 22000

У каракульских овец доминантный ген в гетерозиготном состоянии обуславливает серую окраску меха, а в гомозиготном – летален. Рецессивная аллель этого гена обуславливает черную окраску меха. Скрестили серую рогатую самку с серым рогатым самцом. В потомстве часть особей безрогие. Определите генотипы и фенотипы потомства, поясните результаты получившегося по фенотипу расщепления.

1) По признаку окраски:

АА - серый, летален

Т. к. и овцы и бараны серые, живые, то их генотип Аа.

2) По признаку рогатость/безрогость. Т. к. в в потомстве рогатых овец оказались безрогие, то признак рогатости (B) — доминантный, безрогости (b) — рецессивный, родительские особи гетерозиготны по признаку — Bb.

3) Проводим скрещивание

♀ АаBb, образует гаметы АB, Ab, aB, ab

♂ АаBb, образует гаметы АB, Ab, aB, ab

Ответ: Р ♀ АаBb ♂ АаBb

Потомство. Генотипы: 4AaBb, 2AАBb, 2aaBb, 1aabb, 1AABB, 2AaBB, 2Aabb, 1AAbb, 1aaBB

По фенотипу: 6 серых рогатых: 2 серых безрогих: 3 черных рогатых: 1 чёрные безрогие

4/16 = 1/4 (25%) особей погибли на эмбриональном этапе этим объясняется нарушение расщепления при независимом скрещивании. Вместо 9:3:3:1 получили 6:2:3:1


Задания Д7 № 12625

При самоопылении гетерозиготного растения гороха с жёлтой окраской семян расщепление по генотипу в F1 составит

При самоопылении гетерозиготного (Аа) растения гороха с жёлтой окраской семян расщепление по генотипу в F1 составит по генотипу 1 : 2 : 1 и по фенотипу 3 : 1.

Среди гибридов второго поколения выявляются особи трёх возможных генотипов в соотношении 1АА:2Аа:1аа

Согласно правилу расщепления Менделя.

Закон расщепления, или второй закон Менделя, гласит, что при скрещивании гибридов первого поколения между собой среди гибридов второго поколения в определенных соотношениях появляются особи с фенотипами исходных родительских форм и гибридов первого поколения.

Так, в случае полного доминирования выявляются 75% особей с доминантным и 25% с рецессивным признаком, т. е. два фенотипа в отношении 3:1 . При неполном доминировании и кодомииировании 50% гибридов второго поколения имеют фенотип гибридов первого поколения и по 25% — фенотипы исходных родительских форм, т. е. наблюдают расщепление 1:2:1.

В условии задачи не говоиться, что желтая окраска семян наследуется по механизму неполного доминирования. Исправьте вопрос.

В ответе тоже ничего не говорится про неполное доминирование.

Вопрос про расщепление по ГЕНОТИПУ.

Задание корректное. Ответ верный.

В пояснении написано ,что 3:1 тоже подходит , так почему дано два правильных ответа ?

Во­прос про рас­щеп­ле­ние по ГЕ­НО­ТИ­ПУ.

Ответ вер­ный: 1:2:1

3:1 это расщепление по фенотипу.


Задания Д28 C5 № 11307

Черная окраска шерсти (А) доминирует над белой (а), а мохнатая шерсть (В) над гладкой (в). Какого расщепления по фенотипу следует ожидать от скрещивания двух гетерозиготных по двум признакам кроликов?

1) Так как родители дигетерозиготны, они имеют генотип АаВв,

2) при таком скрещивании, в потомстве проявляется расщепление по фенотипу — 9:3:3:1.

3) 9 —черные,мохнатые,3 — черные, гладкие,3 — белые,мохнатые,1 — белый, гладкий.


Задание 28 № 22311

При скрещивании дигетерозиготного высокого растения томата с округлыми плодами и карликового растения (а) с грушевидными плодами (b) в потомстве получили по фенотипу: 12 высоких растений с грушевидными

плодами, 39 высоких растений с округлыми плодами, 40 карликовых с грушевидными плодами, 14 карликовых с округлыми плодами. Составьте схему скрещивания, определите генотипы потомства. Объясните формирование четырёх фенотипических групп.

с округлыми плодами

с грушевидными плодами

AB/AbaBab/
ab/AaBbAabbaaBbaabb

АаВb – 39 высоких растений с округлыми плодами

Ааbb – 12 высоких растений с грушевидными плодами

ааВb – 14 карликовых растений с округлыми плодами

ааbb – 40 карликовых растений с грушевидными плодами

3) Гены АВ/ и аb/ сцеплены, образуются многочисленные фенотипические группы.

Две другие фенотипические группы образуются в результате кроссинговера между аллельными генами.

(Допускается иная генетическая символика.)

Не нужно писать что это анализирующее скрещивание?


Задание 4 № 2428

Каким будет соотношение расщепления признаков по фенотипу у потомства, полученного от скрещивания дигетерозиготного черного, мохнатого кролика АаBb с белой, гладкошерстной крольчихой ааbb?

F: АаBb; ааВb, Ааbb, ааbb

По фенотипу: 1 часть черные мохнатые : 1 часть черные гладкие : 1 часть белые мохнатые : 1 часть белые гладкие. Расщепление по генотипу соответствует расщеплению по фенотипу.


Задания Д6 № 19335

Каким будет расщепление по фенотипу от скрещивания двух дигетерозиготных по признакам окраски и длине шерсти чёрных с нормальной шерстью морских свинок? Белая окраска и длинная шерсть определяются рецессивными генами

Закон независимого наследования признаков состоит в том, что от скрещивания двух дигетерозиготных по признакам окраски и длине шерсти морских свинок каждая пара аллельных генов и признаков, определяемых ими, ведет себя независимо от других пар аллельных генов и признаков. При этом возникают всевозможные сочетания в определенных числовых соотношениях по фенотипу и генотипу. При дигибридном скрещивании, при полном доминировании, соотношение по фенотипу будет 9 : 3 : 3 : 1.


Задания Д6 № 2205

При моногибридном скрещивании гетерозиготной особи с гомозиготной рецессивной в их потомстве происходит расщепление признаков по фенотипу в соотношении

Вариант А) расщепление по фенотипу при скрещивании гетерозигот, Б) расщепление по фенотипу при скрещивании дигетерозигот, Г) расщепление по генотипу при скрещивании гетерозигот. В нашем же случае гетерозиготная особь дает два варианта гамет, гомозиготная – один, поэтому расщепление будет 1:1.


Задание 28 № 48984

Форма гребня у кур контролируется двумя взаимодействующими генами, у каждого из которых есть доминантный и рецессивный аллели. Если особь имеет доминантные аллели обоих генов, то возникает ореховидная форма гребня, если рецессивные аллели — листовидная форма. Сочетание доминантного первого гена и рецессивного второго даёт розовидную форму гребня, а сочетание рецессивного первого гена и доминантного второго приводит к развитию гребня гороховидной формы. Какое расщепление по фенотипу можно ожидать при скрещивании курицы с гороховидным гребнем и дигетерозиготного петуха? Составьте схему решения задачи. Определите все возможные генотипы родительских особей, генотипы и фенотипы возможного потомства. Как называется данный тип взаимодействия генов?

Схема решения задачи включает:

P

♀aaBB×♂AaBb
гороховидный гребень ореховидный гребень

aBAB Ab aB ab

1 AaBB — ореховидный гребень

1 AaBb — ореховидный гребень

1 aaBB — гороховидный гребень

1 aaBb — гороховидный гребень

P

♀aaBb×♂AaBb
гороховидный гребень ореховидный гребень

aB abAB Ab aB ab

2 AaBb — ореховидный гребень

2 aaBb — гороховидный гребень

1 AaBB — ореховидный гребень

1 aaBB — гороховидный гребень

1 Aabb — розовидный гребень

1 aabb — листовидный гребень

3. В случае, если генотип курицы ааВВ, расщепление по фенотипу в потомстве 1 : 1. Если генотип курицы ааBb, то расщепление по фенотипу в потомстве 3 : 3 : 1 : 1. Тип взаимодействия генов — комплементарное взаимодействие.

Допускается иная генетическая символика.


Задания Д8 № 19321

Установите соответствие между методом селекции и его использованием в селекции растений и животных.

А) массовый отбор

Б) отбор по экстерьеру

В) получение полиплоидов

Г) искусственный мутагенез

1) селекция растений

Запишите в ответ цифры, расположив их в порядке, соответствующем буквам:

Методы селекции растений:

1) гибридизация (близкородственная (инцухт) — скрещивание сортов (чистых линий) с целью получения у гибридов эффекта гетерозиса; неродственная (аутбридинг) — скрещивание особей разных видов или родов с целью получения гибридов, сочетающих признаки двух разных растений;

2) искусственный отбор (массовый — отбор по фенотипу группы особей; индивидуальный — отбор единичных особей);

3) мутагенез (изменение наследственности с помощью мутагенов с целью получения полиплоидов и гибридов с новыми признаками);

4) культура клеток и тканей (как выращивание растений из отдельных клеток или тканей, в том числе получение гаплоидов, выращенных из гамет гибридов - это современный метод - относящийся к биотехнологии);

5) хромосомная инженерия (внедрение хромосом растений одного сорта (вида) в геном растения другого сорта (вида);

6) генная инженерия (перенос генов растения одного вида (сорта) в генотип растения другого вида (сорта), получение трансгенных растений - это современный метод - относящийся к биотехнологии).

Методы селекции животных:

1) гибридизация (близкородственная (инбридинг) — скрещивание близкородственных особей с целью получения гибридов с гомозиготным состоянием генов; неродственная (аутбридинг) — скрещивание домашних животных с дикими предками (внутривидовая неродственная гибридизация) и межвидовая неродственная гибридизация);

2) искусственный отбор (индивидуальный отбор по хозяйственно полезным признакам и экстерьеру);

3) испытание родителей по потомству для оценки племенных качеств производителей;

4) искусственное осеменение для интенсивного использования ценных производителей;

5) полиэмбриония (получение нескольких близнецовых зародышей из одной зиготы);

6) клеточное клонирование (клеточная инженерия);

7) генная инженерия (перенос генов одного вида (породы) в генотип другого вида (породы), получение трансгенных животных).


Задача 154.
Низкорослые помидоры с красными плодами скрестили с высокими желтыми плодами. Высокий рост и красный цвет доминантные. Какое расщепление потомков?
Решение:
А - высокий рост томата;
а - низкий рост томата;
В - красный цвет плодов томата;
в - желтый цвет плодов томата.
Нужно провести анализирующее скрещивание, получим:

1. Схема скрещивания гомозигот
Р: ааВВ х ААвв
Г: аВ Ав
F1: АаВв - 100%.
Фенотип:
АаВв - высокий рост красные плоды- 100%.
Все потомство единообразно - высокие с красными плодами помидоры.

2. Схема скрещивания рецессивных гомозигот и гетерозигот
Р: ааВв х Аавв
Г: аВ, ав Ав, ав
F1: АаВв - 25%; Аавв - 25%; ааВв - 25%; аавв - 25%.
Наблюдается 4 типа генотипа. Расщепление по генотипу - 1:1:1:1.
Фенотип:
АаВв - высокий рост красные плоды - 25%;
Аавв - высокий рост желтые плоды - 25%;
ааВв - низкий рост красные плоды - 25%;
аавв - низкий рост желтые плоды - 25%.
Наблюдается 4 типа фенотипа. Расщепление по фенотипу - 1:1:1:1.
В потомстве наблюдается 50% высоких растений, из которых половина имеют красную окраску плодов, а другая половина - желтую и 50% низких растений, из которых половина имеют красную окраску плодов, а другая половина - желтую.

Определение генотипа у потомков и родителей


Задача 155.
От скрещивания двух растений гороха, выросших из желтых и гладких семян, получено 264 желтых гладких, 61 желтых морщинистых, 78 зеленых гладких, 29 зеленых морщинистых семян. Определите генотип потомков и родителей.
Сначала рассчитаем количество потомков по фенотипическим признакам, получим:
желтые семена - 264 + 61 = 325;
зеленые семена - 78 + 29 = 107;
гладкие семена - 264 + 78 = 342;
морщинистые семена - 61 + 29 = 90.
Решение:
По полученным соотношениям произошло расщепление:
• по окраске семян – 325:107 = 3,04:1;
• по форме семян – 342:90 = 3,8:1, то есть по обоим признакам произошло расщепление по росту в пропорции приблизительно 1 : 3, следовательно, скрещивались особи гетерозиготные по обеим парам генов. При дигибридном скрещивании дигетерозигот количество особей с двумя рецессивными признаками равно 1/16.
264:61:78:29 = 9,1:2,1:2,7:1, что приблизительно соответствует формуле 9:3:3:1.
При дигибридном скрещивании вероятность того, что признаки гладкая форма и жёлтая окраска семян проявляется одновременно, вместе равна произведению 3/4 х 3/4 = 9/16, морщинистая форма и жёлтая окраска 1/4 х 3/4 = 3/16 и морщинистая форма и зелёная окраска – 1/4 х 1/4 =1/16. Произведение отдельных вероятностей даёт отношение классов расщепления по фенотипу 9/16 : 3/16 : 3/16 : 1/16 или 9 : 3 : 3 : 1.
Формула 9 : 3 : 3 : 1 выражает расщепление в F2 по фенотипу при дигибридном скрещивании. Анализ расщепления по генотипу даёт нам формулу расщепления: 1AABB, 2AaBB, 2AABb, 4AaBb, 1Aabb, 2Aabb, 1aaBB, 2aaBb и 1aabb. Расщепление по генотипу в F2 при дигибридном скрещивании 1 : 2 : 2 : 4 : 1 : 2 : 1 : 2 : 1, что отражает расщепление по фенотипу 9 : 3 : 3 : 1.

Определение расщепления по фенотипуи и генотипу у тыквы


Задача 156.
У тыквы белая окраска плода доминирует над желтой, а дисковидная форма над шаровидной. Гетерозиготную тыкву с белыми дисковидными плодами скрестили с белой шаровидной тыквой. Определите расщепление по фенотипуи и генотипу.
Решение:
А - белая окраска плода;
а - жёлтая окраска плода;
В - дисковидная форма плода;
в - шаровидная форма плода;
АаВв - дигетерозигота - белые дисковидные плоды;
ААвв - белая шаровидная тыква.

Схема скрещивания
Р: АаВв х ААвв
Г: АВ, Ав Ав
аВ, ав
F1: ААВв - 25%; ААвв - 50%; АаВв - 25%.
Наблюдается три типа генотипа. Расщепление по генотипу - 1:2:1
Фенотип:
ААВв - белая дисковидная тыква - 25%;
ААвв - белая шаровидная тыква - 50%;
АаВв - белая дисковидная тыква - 25%.
Наблюдаемый фенотип:
белая дисковидная тыква - 50%;
белая шаровидная тыква - 50%.
Наблюдается два типа фенотипа. Расщепление по фенотипу - 1:1.

Выводы:
в потомстве данного скрещивания наблюдается два фенотипа, все особи имеют белые плоды, а по форме наблюдается расщепление - 1:1.

1. Допишите предложения.
1. Сущность гибридизации как метода генетического исследования заключается в скрещивании двух организмов.
2. Гибридизация, при которой исследуется наследование только одного признака, называется моногибридное скрещивание.

2. Как называется признак, проявляющийся у гибридов первого поколения при скрещивании чистых линий. Приведите примеры таких признаков из результатов опытов Менделя с горохом.
Доминантный признак. Например, при скрещивании гороха с желтыми и зелеными семенами у гибридов первого поколения семена также будут желтыми, то есть желтые семена – это доминантный признак.

3. Дайте определения гомозиготных и гетерозиготных организмов.
Гомозиготные организмы – организмы, имеющие две идентичные копии данного гена в гомологичных хромосомах.
Гетерозиготные организмы – организмы, имеющие две различные формы данного гена (разные аллели) в гомологичных хромосомах.

4. Приведите формулировку первого закона Менделя.
Первый закон Менделя (закон доминирования, или закон единообразия гибридов первого поколения) – при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, все первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей.

5. Допишите схему, иллюстрирующую первый закон Менделя, используя буквенное обозначение признаков.

37-5

6. Раскройте сущность явления неполного доминирования.
Приведите примеры.
Неполное доминирование – гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот. Примеры: при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки.

7. Закончите предложение.
Расщеплением называется явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть – рецессивный.

8. Приведите формулировку второго закона Менделя.
Второй закон Менделя (закон расщепления) — при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

9. Ответьте, при каком типе доминирования отмечается совпадение расщепления по фенотипу и генотипу у гибридов второго поколения при условии скрещивания чистых линий.
При условии неполного доминирования.

10. Дайте формулировку закона чистоты гамет.
Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи.

11. Дайте определение дигибридного скрещивания.
Дигибридное скрещивание – скрещивание организмов, различающихся по двум парам альтернативных признаков, например, окраске цветков (белая или окрашенная) и форме семян (гладкая или морщинистая).

12. Приведите формулировку третьего закона Менделя.
Третий закон Менделя (закон независимого наследования) — при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

13. Напишите результаты скрещивания растений гороха, используя решетку Пеннета. Покажите наглядно, (например, с помощью цветных карандашей), что расщепление по фенотипу в потомстве составляет соотношение 9:3:3:1.
А – красные цветки
а – белые цветки
В – длинные стебли
в – короткие стебли
Р генотип: АаВв × АаВв
Фенотип: красный длинный × красный длинный

13

14. Используя результаты задания 13, покажите, что при дигибридном скрещивании каждая пара признаков имеет расщепление в потомстве в соотношении 3:1, как при моногибридном скрещивании, т.е. наследуется независимо от другой пары признаков. Заполните таблицу.

14

15. Закончите утверждение.
Третий закон Менделя можно справедливо называть законом независимого наследования.

16. Закончите предложения.
1. Генетический метод, используемый для ответа на вопрос, гомозиготен или гетерозиготен данный организм, имеющий доминантный фенотип, называется анализирующее скрещивание.
2. При этом исследуемый организм скрещивают с организмом, имеющим генотип, гомозиготный по рецессивной аллели, имеющий рецессивный фенотип.
3. Если исследуемый организм гомозиготен, то потомство от данного скрещивания будет единообразным и расщепления не произойдет.
4. Если исследуемый организм гетерозиготен, то произойдет расщепление 1:1 по фенотипу.

17. Объясните, почему при проведении генетических исследований Г. Мендель и другие ученые использовали большое число организмов и многократно повторяли свои опыты.
Мендель и другие ученые использовали точные количественные методы для анализа данных. На основе знания теории вероятностей необходимо было проведение анализа большого числа скрещиваний для устранения роли случайных отклонений.

Читайте также: