Как влияет гравитация на рост растений

Обновлено: 07.07.2024

Эксперимент WAICO (“Изгибание и завивание корней арабидопсиса”) будет проведен на установке Biolab. Арабидопсис — распространенный на Земле сорняк, часто использующийся в биологических экспериментах.

В ходе опыта посевы двух различных разновидностей арабидопсиса — обычной дикой линии и генетически модифицированной линии — будут выращиваться при различных уровнях гравитации: от нулевого до земного.

Посаженные семена арабидопсиса будут оставлены на 10-15 дней, условия — температура, влажность, освещенность — будут контролироваться. Рост корней будет записываться на видео, телеметрическая связь позволит ученым на Земле наблюдать его в реальном времени.

Знание того, как именно гравитация влияет на рост корней и появление на них загибов, позволит лучше понять механизм роста растений вообще, что может пригодиться в сельском хозяйстве. Кроме того, это знание будет полезно, когда появится необходимость выращивать съедобные культуры в космических условиях — например, при полете к Луне или к Марсу.

Зачем космонавтам овощи и фрукты?


К тому же со временем замороженная пакетированная пища просто надоедает.

Это не просто грустно — из-за недостатка аппетита космонавты часто теряют в весе, замечает норвежский биолог Силье Вольф. Эти проблемы во многом могут решить собственные грядки на борту.

Сегодня технологии космического земледелия разрабатывают для станций на орбите Земли, но у биологов есть и другие цели, куда более масштабные. Исследователи и энтузиасты всё чаще говорят о колонизации других планет. В планах и проектах появляются конкретные цифры: сколько будет длиться перелет и сколько людей смогут стать первыми колонистами. Дорога, например, на Марс займет долгие месяцы, еще дольше людям придется обживать новую колонию. Как считает эксперт программы МКС в NASA Джули Робинсон, даже самые современные технологии консервации и заморозки не позволят так долго сохранять все нужные питательные вещества в пище переселенцев.

На одних консервах новому поселению не выжить, полагаться на поставки с Земли рискованно, поэтому нужны методы, которые позволят выращивать растения самостоятельно. Тестировать их придется в самых суровых условиях — ведь на том же Марсе колонистов ждет пыль вместо плодородной почвы и жесткий ультрафиолет вместо ласковых солнечных лучей, отфильтрованных земной атмосферой.

Почему садоводство в космосе — это так сложно?


На закрытых станциях есть и другая проблема — нарушения конвекции (теплообмена) , которые возникают, если замкнутое пространство плохо вентилируется. При этом вокруг растения накапливаются летучие органические вещества, способные затормозить его рост.

Наша земная почва, дающая жизнь растениям, — это сложная система, где одинаково важны и минералы, и органика. На Марсе, например, ситуация совсем другая. Поверхность Красной планеты покрыта реголитом — мелким песком и пылью, которые образуются, когда скальные породы разрушаются из-за ветра, колебаний температуры и ударов метеоритов. Эта пыль не просто безжизненна, для растений она опасна: в ней содержатся токсичные соединения, в том числе перхлораты — соли хлорной кислоты.

Китайские ученые выяснили, как похожая концентрация перхлоратов в воде отражается на нескольких видах растений: токсины заметно уменьшили и стебли, и корни. Кроме того, перхлораты накапливались в листьях, поэтому включить такие растения в рацион не получится. А еще соли хлорной кислоты не позволят заселить поверхность Марса земными бактериями, чтобы создать плодородный слой перегноя. Эксперименты шотландских астробиологов показали, что перхлораты усиливают бактерицидный эффект ультрафиолета, поэтому бактерии нашей почвы просто не выживут на поверхности Марса.

Возможно, от идеи огородов на марсианском реголите придется отказаться вовсе, сосредоточившись на других методах — в первую очередь на технологиях гидропоники и аэропоники.


Чем можно заменить почву

Сегодняшние способы космического садоводства можно условно разделить на те, для которых нужен относительно плотный субстрат (скажем, почва или глина), и те, где главную роль играют вода и жидкие растворы.

Установка Vegetable Production System (Veggie), которая с 2014 года снабжает МКС свежей зеленью, ближе к первому типу.

В Veggie семена прорастают в специальных подушечках, где кальцинированная глина смешана с капсулами, в которых находятся удобрения. Полимерная оболочка капсул постепенно разрушается, вовремя выпуская очередную порцию подкормки. Конструкцию освещают зеленые, красные и синие светодиоды — во время экспериментов астронавты периодически меняют режим освещения, чтобы выяснить, что лучше всего подходит определенным растениям. В установке есть система автоматического полива при помощи капилляров, но иногда астронавты поливают орбитальный огород сами. Например, так пришлось поступить Скотту Келли, чтобы спасти от неожиданной засухи цветы циннии.

Исследователи намерены привезти на Землю семена, созревшие на МКС, прорастить их в лаборатории и вернуть новое поколение семян на станцию, чтобы выяснить, как на них скажутся такие сильные перепады гравитации.

Просто добавь воды: гидро- и аэропоника


Еще более перспективной может оказаться аэропоника: в этом случае корни растений находятся не в воде или субстрате, а в воздухе. Рядом установлены распылители, которые время от времени обволакивают корни легкой дымкой из крохотных капель питательного раствора. Так растения получают и питание, и достаточное количество кислорода — риск задушить урожай слоем воды намного ниже, чем в случае с классической гидропоникой. Уменьшается и риск болезни растений, так как опасные микроорганизмы часто поселяются в воде или влажном субстрате.

Гидропонику и аэропонику уже давно успешно используют на Земле. Они позволяют собирать урожаи даже в экстремальных условиях — например, в Антарктике.

Ученые из немецкого Института полярных и морских исследований им. Альфреда Вегенера уже несколько лет выращивают огурцы, помидоры, сладкий перец и зелень на антарктической станции Neumayer-Station III.

Аэропоническую теплицу обустроили в отдельном здании, и, когда метель не дает ученым добраться туда из основного строения, поливом и освещением могут дистанционно управлять их коллеги из Германии. Биологи говорят, что одна из основных задач их работы — подготовить новые методики садоводства для тестирования в космических условиях.

Как на вулкане: эксперименты c аналогами реголитов

Ученые собрали уже более десятка урожаев, в их продуктовой корзине помидоры, горох, редис, рожь, зеленый лук и другие растения. Первые тесты показали, что уровень токсичных тяжелых металлов в овощах не превышает допустимые нормы (впрочем, новые урожаи еще проверят много раз).

В 2017 году в марсианский образец грунта поселили червей, и они не только выжили, но и дали потомство.

Руководитель проекта Вигер Вамелинк говорит, что дождевые черви могут стать важнейшим звеном земледелия на других планетах: они обогащают почву биогумусом, а их ходы помогают воде и воздуху лучше проникать в грунт.

Конечно, прогнозы Вамелинка очень оптимистичны. Условия на Красной планете суровые: растениям нужно будет не просто выжить в пылевом грунте, но и устоять перед натиском ультрафиолета — уровень излучения на Марсе намного выше, чем на Земле, поскольку нашу планету защищает озоновый слой. Не стоит забывать и о токсичных перхлоратах: неизвестно, найдется ли способ очистки грунта и сколько это будет стоить. Впрочем, даже если разбить на Марсе огороды по методу Вамелинка не выйдет, результаты его работы пригодятся на Земле — например, помогут выявить растения, дающие стабильный урожай на вулканических почвах.

Новая Земля: проекты терраформирования других планет

Самый популярный кандидат на роль Земли 2.0 — конечно, Марс. Он находится по космическим меркам недалеко от нас, обладает запасами водяного льда и атмосферой — очень разреженной, но все-таки способной хоть немного защитить от радиации. Проекты терраформирования в основном фокусируются как раз на уплотнении атмосферы. Например, группа Джима Грина, директора отдела по изучению планет NASA, предложила окружить Красную планету оболочкой искусственного магнитного поля. Создавать его, по плану Грина, будет космический аппарат, находящийся в точке Лагранжа L1 между Солнцем и Марсом. Как именно должно работать это устройство, астрофизик не уточнил.


Синезеленые водоросли способны выдержать очень суровые условия, некоторые из них являются экстремофилами — возможно, какие-то из них выживут и на Марсе.

Пока терраформинг остается скорее мечтой, чем конкретной стратегией. Но авторы этих концепций сходятся во мнении: земные технологии быстро развиваются, и спустя десятилетия мы сможем говорить об освоении других планет куда конкретнее. Кто знает, вдруг и марсианские яблони станут реальностью?

Предполагают, что гравитационные силы принимают активное участие в эволюции, оказывают влияние на развитие растений и животных, включая их отдельные клетки. Очевидно, большое было влияние гравитации при выходе организмов на сушу, потому что это привело к их перестройке – уменьшению размеров тела, улучшению энергетической базы и т.д. На Земле нет растений и животных, нейтральных по отношению к действию силы тяжести. Всем известно, что у организмов есть специальные органы ориентации.

Цель

Изучение влияния разных скоростей свободного падения (g) на выживаемость клеток млекопитающих.

Задачи

1. Изучить литературные данные по теме исследования.

2. Провести две серии экспериментов по изучению влияния центробежного ускорения на выживаемость клеток млекопитающих.

3. Проанализировать результаты исследования и сделать выводы.

Оснащение и оборудование, использованное при создании работы

  • Ценрифуга MiniSpin (Eppendorf, США)
  • Световой микроскоп
  • Камера Горяева
  • Краситель трипановый синий

Описание

Работу проводили на клетках нейробластомы человека. Для изучения гравитации на выживаемость клеток были проведены две серии экспериментов. В каждую пробирку помещали 1 млн клеток в 1 мл питательной среды

В первой серии на клетки воздействовали повышенной силой тяжести при помощи центрифуги с одинаковыми промежутками времени – 3 мин.


Затем с помощью камеры Горяева и красителя трипанового синего, который проникает только в клетки с разрушенной мембраной, проводили дифференциальный подсчёт живых и мёртвых клеток.


Во второй серии экспериментов изучалось воздействие времени перегрузок. Для этого, основываясь на результатах первого опыта, выбрали ускорение свободного падения – 500g и центрифугировали клетки 10 – 30 – 60 – 120 минут.

Далее также проводили дифференциальный подсчёт живых и мёртвых клеток.

Результаты работы/выводы

1. При проведении исследования влияния перегрузок на выживаемость клеток обнаружено, что клетки выдерживают значительные перегрузки, и усиление смертности происходит только при увеличении g в 2000 раз.

2. Одновременно обнаружено, что относительно невысокие перегрузки в 500 g усиливают своё влияние на жизнеспособность клеток прямо пропорционально со временем воздействия. Так, перегрузка в 500g в течение часа и более приводит к существенному увеличению доли мёртвых клеток в образце.

Учёные исследовали рост растений в отсутствие гравитации

На поверхности Земли все растения тянут свои стволы и стебли ввысь, при этом их корни стремятся к центру планеты, то есть обладают отрицательным геотропизмом.

Всё потому, что ориентация в пространстве и рост растения определяются не только генетическими факторами, но и условиями произрастания, одним из которых является гравитация.

За последние пять лет было опубликовано более 300 работ, касающихся выдающейся роли геотропизма в жизни царства растений. Но до сих пор оставался недостаточно изученным вопрос влияния силы притяжения Земли на два важных показателя корневой системы: её "завивание" и "отклонение".

Так называемое завивание корней происходит из-за периодической смены направления роста их кончиков. Считается, что это явление связано с необходимостью преодолевать препятствия – после огибания корень, руководимый гравитацией, вновь устремляется вниз.

Отклонение, в свою очередь, – процесс углового смещения корня, когда он касается какой-либо поверхности, например, при ветвлении. Ранее учёные полагали, что завивание и отклонение корня происходит по одному и тому же сценарию.

Чтобы лучше разобраться в вопросах развития корневой системы растений и влияния на этот процесс гравитации, исследователи из университета Флориды (University of Florida) решили полностью исключить последний фактор и запустили своих подопечных в космос.

На Международную космическую станцию в 2010 году были отправлены два сорта небольшого цветкового растения, часто используемого в биологических экспериментах (резуховидки Таля). Подрастая, они опровергли сразу несколько устоявшихся убеждений.

Чтобы оборудованию легче было следить за ростом, на протяжении всего эксперимента растения находились в специальных ёмкостях с прозрачной питательной средой. Общая экспериментальная установка также содержала камеру, которая делала снимки каждые шесть часов на протяжении первых 15 дней роста растений.

Телеметрические данные в режиме реального времени передавались с борта МКС на Землю в Центр космических исследований Кеннеди (Kennedy Space Centre), где был поставлен параллельный эксперимент с контрольными образцами растений. Таким образом, учёные имели возможность сравнить показатели роста резуховидок под действием гравитации и без неё.

Выяснилось, что в условиях невесомости рост растения определяется направлением падающего света или фототропизмом. Это явление было известно учёным довольно давно, но его роль в ориентации корней была недостаточно изучена.

Исследователи обнаружили, что в отсутствии гравитации, но при наличии направленного света, корни резуховидок растут точно так же, как и на Земле, ровно в противоположную от побегов сторону (то есть туда, где меньше света).

По окончании эксперимента выяснилось, что общая длина растений в космосе меньше, чем у контрольных экземпляров на Земле. Но при этом корневая система всех растений обрела классическую витиеватость и наклон.

В статье в журнале BMC Plant Biology, исследователи делают вывод: для завивания и отклонения корней гравитация не является основополагающим фактором.

Ведущий автор работы Анна-Лиза Пол (Anna-Lisa Paul) также отмечает, что описанные выше признаки корневой системы различны для растений, выросших на Земле и в космосе. И если завивание для основного и контрольного экспериментов сопоставимо, то отклонение в условиях невесомости оказалось существенно больше. Этот факт говорит о разных механизмах этих процессов, что ранее было неизвестно.

Безусловно, пока результаты космического эксперимента с ростом корней растений имеют существенное значение именно для фундаментальной науки. Но кто знает, может когда-нибудь, люди будут засевать поля и на других планетах, и тогда полученные сейчас данные окажутся бесценными.

Также по теме: Космический "Ноев ковчег" готовится к старту Живые растения превратили в источник электричества Родить в космосе Учёные выяснили, что в космосе черви живут дольше, чем на Земле Обнаружено отрицательное воздействие невесомости на гены

Читайте также: