Гаметогенез и оплодотворение у животных и у растений

Добавил пользователь Владимир З.
Обновлено: 18.09.2024

Цель урока : изучить процессы образования половых клеток и оплодотворения , выявить их особенности.

  1. Продолжить формирование эмоционально-целостного отношения к изучению сложнейших процессов, происходящих в клетке при её делении; убедить школьников в закономерности и логичности их протекания, половое воспитание на примере образования мужских и женских половых клеток.
ВложениеРазмер
Презентация 1.76 МБ

Предварительный просмотр:

Подписи к слайдам:

Гаметогенез 9-11 класс Учитель Льянова З.К.

Гаметогенез Гаметогенез — это процесс развития половых клеток — гамет (рис. 308). Предшественники гамет ( гаметоциты ) образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. На стадии гаметоцитов клетки, как правило, неотличимы. Различия появляются лишь после их проникновения в половые железы. Гаметоциты диплоидны

Период размножения Сперматогенез 2п2с 2п2с 2п2с 2п2с 2п2с 2п2с 2п2с Овогенез 2п2с 2п2с 2п2с 2п2с 2п2с 2п2с 2п2с сперматогонии овогонии

Период роста 2п2с 2п2с Сперматоцит I порядка Овоцит I порядка 2п4с 2п4с ? ?

СПЕРМАТОГЕНЕЗ ОВОГЕНЕЗ Период созревания 2п4с 1п2с 1п2с 1п1с 1п1с 1п1с 1п1с 2п4с 1п2с 1п1с 1п2с 1п1с 1п1с 1п1с сперматиды овотиды сперматоцит II порядка овоцицит II порядка сперматоцит II порядка

Период формирования 1п1с 1п1с 1п1с 1п1с 1п1с сперматозоиды ЯЙЦЕКЛЕТКА

ОВОГЕНЕЗ Все периоды развития яйцеклеток осуществляются у животных в яичниках. В отличие от образования сперматозоидов, которое происходит только после достижения половой зрелости (в частности, у позвоночных животных), процесс образования яйцеклеток начинается еще у зародыша. Период размножения полностью осуществляется на зародышевой стадии развития и заканчивается к моменту рождения , в результате оогенеза образуется одна нормальная яйцеклетка и три полярных тельца.

ОВОГЕНЕЗ (ООГЕНЕЗ) Фаза размножения 2n4c ---) оогонии 2n2c внутриутробное развитие. Фаза роста ---) ооцит 1 порядка 2n4c (рождение) Фаза созревания: Мейоз 1 ---) ооцит 2 порядка n2c до овуляции и образование направительного тельца (овуляция) Мейоз 2---) яйцеклетка 2n2c (---- ОПЛОДОТВОРЕНИЕ и образуются 1 крупная гаплоидная яйцеклетка с запасом питательных веществ и 3 мелких гаплоидных клетки – направительные тельца, необходимые для равномерного распределения хромосом в мейозе, а за тем погибают

СПЕРМАТОГЕНЕЗ Во время периода размножения диплоидные сперматогенные клетки делятся митотически , в результате чего образуется множество более мелких клеток, называемых сперматогониями .. Другая часть — прекращает делиться и увеличивается в размерах, вступая в следующий период сперматогенеза — период роста. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка. Период созревания начинается тогда, когда сперматоцит 1-го порядка подвергается первому мейотическому делению, в результате чего образуются два сперматоцита 2-го порядка. Затем эти вновь образовавшиеся клетки делятся (второе мейотическое деление), и в результате образуются гаплоидные сперматиды . Таким образом, из одного сперматоцита 1-го порядка возникают четыре гаплоидных сперматиды .

Сперматогенез Фаза размножения 2n4c в результате митоза образуются многочисленные сперматогонии 2n2c . Фаза роста. На этой стадии сперматогонии незначительно увеличиваются в размерах, и из каждой клетки образуется сперматоцит 1 порядка 2n4c . Фаза созревания: Мейоз 1 образуется 2 сперматоцита 2 порядка n2c . Мейоз 2 образуется 4 гаплоидные клетки – сперматиды. nc Все 4 клетки одинаковы по величине, созревают 4 сперматозоида. Процесс образования сперматозоидов у человека занимает 70 дней.

Гаметы Гаметы — это половые клетки, при слиянии которых образуется зигота, дающая начало новому организму. Они представляют собой высокоспециализированные клетки, участвующие в осуществлении процессов, связанных с половым размножением. Гаметы имеют ряд особенностей, отличающих их от соматических клеток: хромосомный набор соматических клеток (у большинства организмов) — диплоидный (2 n 2с), а гамет — гаплоидный ( n с); гаметы не делятся; гаметы, особенно яйцеклетки, более крупные, чем соматические клетки; яйцеклетка содержит много питательных веществ, сперматозоид — мало (практически отсутствуют); гаметы имеют измененное ядерно-цитоплазматическое соотношение по сравнению с соматическими клетками (в яйцеклетке ядро занимает значительно больший объем, чем цитоплазма, в сперматозоиде — наоборот, причем ядро имеет такие же размеры, что и яйцеклетка).

Организация сперматозоидов Сперматозоид открыт в 1617 году учеником Гука. Он обеспечивает встречу с яйцеклеткой, приносит в нее свою часть генетической информации, стимулирует развитие зиготы. Длина сперматозоида человека 50-60 мкм. Функции сперматозоида определяют и его строение. Сперматозоид млекопитающих имеет форму длинной нити

Яйцеклетка человека была открыта в 1821 году К.М.Бэром . Окончательное созревание яйцеклетки происходит уже после оплодотворения, поэтому фактически зрелой яйцеклетки не существует. Размер яйцеклеток колеблется в широких пределах — от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека — около 100 мкм, яйцо страуса, имеющее длину со скорлупой порядка 155 мм — тоже яйцеклетка). Форма ее обычно округлая или слегка сплюснутая.

У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения . Различают :  Первичные оболочки, возникающие в результате выделения ооцитом и, возможно, фолликулярными клетками веществ. Выполняют защитную функцию .. У млекопитающих эта оболочка называется блестящей.  Вторичные оболочки, образованные выделениями фолликулярных клеток яичника. Имеются не у всех яиц. Вторичная оболочка яиц многих насекомых, например, содержит канал — микропиле , через который спер- матозоид проникает в яйцеклетку.  Третичные оболочки,. Например, у птиц происходит образование белковой, подскорлуповой пергаментной, скорлуповой и надскорлуповой оболочек.

алецитальные яйца — яйца, не содержащие желтка или имеющие незначительное количество желточных включе - ний (млекопитающие, плоские черви); изолецитальные яйца — яйца с равномерно распределенным желтком (ланцетник, морской еж); умеренно телолецитальные яйца — яйца с неравномерным распределением желтка (рыбы, земноводные); резко телолецитальные яйца — яйца, в которых желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него (птицы).

Типы дробления яйцеклеток

Женская половая система Яичник содержит 300-400 яйцеклеток, вырабатывает гормон эстроген. Он имеет миндалевидную форму и достигает длины 3 см. Яйцеклетки — женские половые клетки

Из 23 пар хромосом только одна определяет пол будущего ребенка Хромосомы Х Y Хромосомы X X

Диаметр = 0,15 мм Диаметр = 0,005 мм Оплодотворение —– совокупность процессов, приводящих к слиянию мужских и женских гамет ( сингамия ), объединению их ядер ( кариогамия ) и образованию зиготы, которая дает начало новому организму.

В процессе оплодотворения происходит : 1)активация яйцеклетки; 2)восстановление диплоидного набора хромосом; 3)определение пола будущего организма; 4)объединение наследственных свойств родительских организмов и возникновение у потомков новых комбинаций наследственных факторов.

Санкт-Петербург гимназия № 441 учитель биологии Деларова Е.В. Оплодотворение у животных Внешнее Внутреннее Рыбы, земноводные, большинство моллюсков, некоторые черви Пресмыкающиеся, птицы, млекопитающие

Санкт-Петербург гимназия № 441 учитель биологии Деларова Е.В. Внешнее оплодотворение Происходит вне организма самки, обычно в водной среде При внешнем оплодотворении много половых клеток гибнет

Внутреннее оплодотворение Происходит в половых путях самки, обычно в водной среде Зигота защищена материнским организмом Уменьшается вероятность гибели клеток в окружающей среде Строение амниотического яйца Развитие зародыша млекопитающего

Санкт-Петербург гимназия № 441 Партеногенез parthenos (греч.) - девстенница genesis (греч.) - возникновение Развитие полноценных особей происходит из неоплодотворенной яйцеклетки Встречается у некоторый растений, насекомых (перепончатокрылые), червей, рептилий и птиц

Факторы, способные повлиять на процесс оплодотворения: Алкоголь, никотин, наркотики. Антибиотики. Рентгеновское, радиоактивное излучение. Инфекционные заболевания. Воспалительные процессы. Неправильный образ жизни, в том числе ранние половые связи. Избыточный или недостаточный вес. Гормональные нарушения. Стрессы. Хирургические операции, особенно на органах малого таза. Наследственные заболевания. Аномалии внутренних органов.

По теме: методические разработки, презентации и конспекты


Гаметогенез.

Образование половых клеток. Строение яйцеклетки и сперматозоида. Процесс оплодотворения.

Гаметогенез

Гаметогенез, или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выд.

Тест в формате ЕГЭ по теме "Гаметогенез и оплодотворение".

Данная методическая разработка может быть использована при изучении темы " Размножение организмов и онтогенез" при подготовки учащихся 9-11 классов к итоговой аттестации.


Деление клетки. Гаметогенез

презентация к уроку.


Схема к уроку в 9 классе по теме "Гаметогенез"

Данную схему удобно раздавать во время объяснения материала, во время которого делаются подписи к рисункам. Схема вклеивается в тетрадь.


Гаметогенез, Стадии и процессы

Презентация к уроку по теме "ГАметогенез" в разделе Цитология ( старшие классы).


Зачет по теме гаметогенез. Двойное оплодотворение.

Данный материал содержит вопросы профильного уровня для зачета и проверки знаний по теме гаметогенез, митоз, мейоз, двойное оплодотворение.

2. Гаметогенез- процесс образования и развития половых клеток-гамет

ГАМЕТОГЕНЕЗ- ПРОЦЕСС ОБРАЗОВАНИЯ И
РАЗВИТИЯ ПОЛОВЫХ КЛЕТОК-ГАМЕТ
Сперматогенез
Овогенез(оогенез)
Из клеток зачаточного эпителия в
половых железах(гонадах) в ходе
ряда митозов и мейозов

3. Фазы гаметогенеза

ФАЗЫ
Фаза
размножения
Фаза роста
Фаза
созревания
ГАМЕТОГЕНЕЗА
Многократный митоз
интерфаза
Сперматогонии
или оогонии
Сперматоцит 1-го
порядка,
ооцит 1-го порядка
Мейоз I, мейоз II
Зрелые гаметы

4. Сперматогенез (у человека происходит 70 дней) при половом созревании

СПЕРМАТОГЕНЕЗ
(У ЧЕЛОВЕКА ПРОИСХОДИТ 70 ДНЕЙ) ПРИ
ПОЛОВОМ СОЗРЕВАНИИ
Ф.Размножения 2n4c
Ф.Роста 2n2c
митоз
Рост+интерфаза
Мейоз I
Ф. Созревания 2n4c
Ф.формирования
Мейоз II
Сперматогонии 2n2c
Сперматоцит I порядка 2n4c
2 сперматоцита II порядка
4 сперматиды nc
4 сперматозоида
n2c

5. Фаза формирования сперматозоида

6. Строение сперматозоида

СТРОЕНИЕ СПЕРМАТОЗОИДА
Головка - ядро+акросома(видоизмененный Аппарат Гольджи с
ферментами, разрушающими оболочку яйцеклетки.
Шейка – содержит центриоли
Тело – содержит митохондрии расположенные по спирали.
Хвост – содержит микротрубочки, обеспечивает подвижность

7. Оогенез (овогенез) (начинается внутриутробно-заканчивается после оплодотворения)

ООГЕНЕЗ (ОВОГЕНЕЗ)
(НАЧИНАЕТСЯ ВНУТРИУТРОБНОЗАКАНЧИВАЕТСЯ ПОСЛЕ ОПЛОДОТВОРЕНИЯ)
Ф.Размножения 2n4c
Ф.Роста 2n2c
митоз
Рост+интерфаза+
Профаза 1
Мейоз I
Ф. Созревания 2n4c
Мейоз II
идет
до метафазы и не
заканчивается пока
не произойдет
оплодотворение
Оогонии 2n2c (внутриутробно)
Ооцит I порядка 2n4c
( до овуляции -выход яйцеклетки из
яичника. После рождение)
Ооцит II порядка+направительное
тельце n2c ( перед овуляцией)
Ооцит II порядка+направительное
тельце превращается в яйцо2n2c и второе направительное
тельце

9. Строение яйцеклетки

10. Типы яйцеклеток

ТИПЫ ЯЙЦЕКЛЕТОК
центролецитальные
алецитальные
гомолецитальные
Мало желтка,
распределен
неравномерно
Млекопитающие,
Плоские черви
телолецитальные
Желток в центре
Много желтка
Распределен
равномерно
Много желтка,
Сосредоточен у
вегетативного
полюса
иглокожие
Рыбы, амфибии,
рептилии, птицы
насекомые

13. Гаметогенез у покрытосеменных растений

ГАМЕТОГЕНЕЗ У
ПОКРЫТОСЕМЕННЫХ РАСТЕНИЙ
микрогаметогенез
мегагаметогенез
В пыльнике тычинки
В завязи пестика

14. Образование спермиев (микроспорогенез)

ОБРАЗОВАНИЕ СПЕРМИЕВ
(МИКРОСПОРОГЕНЕЗ)
4 Микроспоры nc
2n 2c
n2c
nc
Пыльцевое зерно мужской гаметофит
2
а
(созревание
пыльцевого зерна)

Процесс формирования половых клеток у растений подразделяется на два этапа: 1-й этап — спорогенез — завершается образованием гаплоидных клеток — спор, в ходе 2-го этапа — гаметогенеза — происходит ряд делений гаплоидных клеток, прежде чем образуются зрелые гаметы.

Процесс образования микроспор, или пыльцевых зерен, у растений называют микроспорогенезом, а процесс образования мегаспор (или макроспор) — мега- или макроспорогенезом. Микроспорогенез протекает аналогично делению созревания у животных мужских половых клеток до стадии сперматиды, а мегаспорогенез — соответственно до стадии незрелой яйцеклетки — ооцита II.

Процесс гаметогенеза у растений в принципе сходен с таковым у животных, но протекает несколько отличным путем. У животных после двух мейотических делений формируются гаметы, и никаких дополнительных клеточных делений не происходит. У растений в результате двух мейотических делений возникает гаплоидная спора, из которой развивается гаметофит, представляющий собой у низших растений (грибов, печеночников, мхов, ряда водорослей) целый организм и наиболее продолжительную стадию цикла существования. У высших растений гаплоидная фаза редуцирована, однако ядра мужской и женской спор претерпевают ряд митотических делений, прежде чем образуются гаметы.

Микроспорогенез и микрогаметогенез

Мы рассмотрим микроспорогенез и микрогаметогенез на примере покрытосеменных растений как наиболее общем. В субэпидермальной ткани молодого пыльника обособляется специальная спорогенная ткань, называемая археспорием. Каждая первичная археспориальная клетка после ряда делении становится материнской клеткой пыльцы (микроспороцитом), которая проходит все фазы мейоза.

Схема микроспорогенеза (1-6) и микрогаметогенеза (5-10) у растений

В результате двух мейотических делений возникают четыре гаплоидные микроспоры. Последние лежат четвёрками и называются клеточными тетрадами.

У однодольных растений каждое деление ядра в мейозе, как правило, сопровождается цитокинезом; у двудольных оба деления клетки наступают одновременно по окончании мейоза.

При созревании клеточные тетрады распадаются на отдельные микроспоры с образованием внутренней (интина) и наружной (экзина) оболочек. Наружная оболочка, как правило, грубая, кутинизированная, поверхность ее либо гладкая, либо шероховатая; приспособленная для переноса пыльцы и прилипания ее к рыльцу пестика. Этим заканчивается микроспорогенез вслед за образованием одноядерной микроспоры начинается микрогаметогенез. Первое митотическое деление микроспоры приводит к образованию вегетативной и генеративной клеток. В дальнейшем вегетативная клетка и ее ядро не делятся. В ней накапливаются запасные питательные вещества, который в последующем обеспечивают деление генеративной клетки и рост пыльцевой трубки в столбике пестика.

Генеративная клетка, содержащая меньшее количество цитоплазмы, вновь делится. Это деление может осуществляться еще в пыльцевом зерне или в процессе его прорастания в пыльцевой трубке. В результате образуются две мужские половые клетки, которые в отличие от сперматозоидов животных называются спермиоклетками, или спермиями.

Таким образом, из одной споры с гаплоидным набором хромосом в результате двух митотических делений образуются три ядра: Два из них — спермии и одно — вегетативное. При образовании пыльцевой трубки это вегетативное ядро в полужидком диффузном состоянии переходит в пыльцевую трубку.

Процесс деления генеративной клетки и образование спермиев в пыльцевой трубке были впервые подробно изучены С. Г. Навашиным в 1910 г. на лилейных растениях.

Мегаспорогенез и мегагаметогенез

У покрытосеменных растений женский гаметофит — это зародышевый мешок, который закладывается и развивается внутри семяпочки.

Схема мегаспорогенеза (1-5) и мегагаметогенеза (6-12) у растений

Развитию женского гаметофита у высших покрытосеменных растений предшествует мегаспорогенез. В субэпидермальном слое молодой семяпочки обособляется археспориальная клетка, чаще она только одна. Клетка археспория растет, превращаясь в материнскую клетку мегаспоры. В результате двух делений мейоза материнской клетки мегаспоры образуется тетрада мегаспор. Каждая из клеток тетрады по числу хромосом является гаплоидной. Однако только одна из них продолжает развиваться, остальные три дегенерируют (моноспорический тип развития), судьба этих клеток напоминает судьбу редукционных телец при созревании яйцеклеток у животных.

На следующем этапе осуществляется мегагаметогенез. Оставшаяся функционировать мегаспора продолжает расти и затем ее ядро претерпевает ряд эквационных делений. При этом сама клетка не делится, делится только ядро.

У разных систематических групп растений число эквационных делений ядра мегаспоры может варьировать от одного до трех. У большинства растений (70% видов покрытосеменных) этих делений, как правило, в результате возникает восемь наследственно одинаковых ядер, вовремя этих делений ядра занимают полярное положение, четыре из них оказываются лежащими ближе к микропиле (место проникновения спермиев), а четыре других — в противоположном конце зародышевого мешка, называемого халазальным. Дальше эти ядра обособляются в самостоятельные клетки, имеющие значительные количества цитоплазмы.

Из четырех клеток, располагающихся у микропиле, три клетки — яйцеклетка, и две так называемые синергиды образуют яйцевой аппарат. Однако из этих трех клеток после оплодотворения развивается только одна, а две другие разрушаются. Четвертое ядро отходит к центру зародышевого мешка, где сливается с одним из ядер, отошедшим от халазального конца. Слившиеся в центральной части два гаплоидных ядра образуют одно диплоидное — вторичное или центральное, ядро зародышевого мешка. Это ядро с цитоплазмой зародышевого мешка называют обычно центральной клеткой зародышевого мешка. Однако часто полярные ядра, передвинувшиеся к центру, не сливаются до оплодотворения. Оставшиеся у халазального конца зародышевого мешка три ядра также обособляются в клетки; они называются антиподами.

Таким образом, в результате трех митотических делений в зародышевом мешке образуется 8 наследственно одинаковых гаплоидных ядер, из которых только одно дает яйцеклетку.

Рассмотренная схема образования восьмиядерного зародышевого мешка из одной мегаспоры является наиболее типичной. Однако у различных групп растений этот процесс протекает весьма разнообразно. В одних случаях, как мы только что рассмотрели, развитие зародышевого мешка начинается из одной гаплоидной споры (моноспорический тип развития), в других — из двух (биспорический тип) и четырех спор (тетраспорический тип).

Типы развития зародышевых мешков

Как мы указывали, при моноспорическом типе развивается лишь одна мегаспора из четырех, а остальные три разрушаются подобно тому, что имеет место с редукционными тельцами у животных. При других типах развития зародышевого мешка сохраняется разное количество мегаспор, возникших в результате мейоза и готовых к дальнейшим митотическим делениям.

Образование пыльцевых зерен и зародышевых мешков у цветковых растений

Изучая гаметогенез, нельзя не поражаться тому параллелизму, который наблюдается при созревании половых клеток у животных и растений, несмотря на то, что их расхождение (дивергенция) в филогенезе произошло на очень раннем этапе возникновения клеточной организации. Это указывает на однотипность принципов построения ряда приспособительных механизмов как в растительном, так и животном мире.

Итак, изучение развития половых клеток у животных и у растений показало, что формирование гамет является сложным процессом. Прежде чем яйцеклетка и спермий объединятся в процессе оплодотворения, они претерпевают ряд превращений. Однако половые клетки так же, как и клетки любой другой ткани, происходят из соматических. Поэтому их нельзя рассматривать как нечто обособленное от тела организма. Вместе с тем половые клетки имеют и свои особенности. Основными характерными моментами, отличающими их от соматических клеток, являются следующие:

1. У разных животных и растений на разных стадиях дифференциации тканей зародыша происходит обособление половых клеток. Процесс закладки и дифференциации, половых клеток у животных называется зачатковым путем.

2. В процессе развития половых клеток особое значение имеет мейоз с характерными для него стадиями деления ядра, а именно профазой I, во время которой конъюгируют гомологичные хромосомы, метафазой I и анафазой I, когда осуществляется редукция числа хромосом и расхождение гомологичных хромосом к различным полюсам.

3. Главным свойством половых клеток является способность их при оплодотворении сливаться в одну с образованием зиготы, которая претерпевает затем дробление и развитие. Соматические клетки этой способностью, как правило, не обладают.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Мейоз – особый способ деления эукариотических клеток, в результате которого образуются клетки со уменьшенным в два раза набором хромосом, образованные клетки имеют различный набор аллелей генов – генетически неодинаковы, эти клетки превращаются в гаметы (у животных) или споры (у растений и грибов). Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n4c) образуются две гаплоидные (1n2c).

Интерфаза 1 (в начале – 2n2c, вконце – 2n4c) происходит обычно и сопровождается ростом, синтезом и накоплением веществ и энергии, необходимых для осуществления обоих делений, увеличением числа органоидов, удвоением центриолей, репликацией ДНК, которая завершается в профазе 1.

Профаза 1 (2n4c). Самая продолжительная и сложная фаза мейоза. Состоит из ряда последовательных стадий.

Лептотена, стадия тонких нитей. Хромосомы слабо конденсированы. Они уже двухроматидные (каждая хромосома состоит из двух сестринских хроматид), но хроматиды настолько сближены, что хромосомы имеют вид длинных одиночных тонких нитей. Теломеры хромосом еще прикреплены к ядерной мембране с помощью особых структур – прикрепительных дисков.

Диплотена. Хромосомы в бивалентах перекручиваются и начинают отталкиваться друг от друга. Процесс отталкивания начинается в области центромеры и распространяется по всей длине бивалентов. Однако они все еще остаются связанными друг с другом в некоторых точках. Их называют хиазмы. Эти точки появляются в местах кроссинговера. В ходе гаметогенеза у человека может образовываться до 50 хиазм.

Диакинез. Хромосомы максимально укорачиваются и утолщаются за счет спирализации хроматид, ядерная оболочка почти полностью разрушена. Происходит сползание хиазм к концам хроматид.

Метафаза 1 (2n4c) происходит выстраивание бивалентов в экваториальной плоскости клетки, прикрепление микротрубочек веретена деления одним концом – к центриолям, другим – к центромерам хромосом, а не к центромерам хроматид, как это было при митозе.

Анафаза 1 (2n4c) – случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому). Происходит вторая рекомбинация генетического материала – у каждого полюса оказывается гаплоидный набор двухроматидных хромосом, часть из них – отцовские, часть – материнские. Многие хроматиды в хромосомах после кроссинговера стали мозаичными, одновременно несут некоторые гены отца и матери.

Телофаза 1 (1n2c в каждой клетке). Происходит образование ядерных оболочек вокруг гаплоидных наборов двухроматидных хромосом, деление цитоплазмы. Из одной диплоидной клетки (2n4c) образовались две клетки с гаплоидным набором хромосом (n2c), поэтому это деление называют редукционным.

Второе мейотическое деление (мейоз 2) называется эквационным.

Профаза 2 (1n2c). Короче профазы 1, хроматин конденсирован, нет конъюгации и кроссинговера, происходят процессы, обычные для профазы – распад ядерных мембран на фрагменты, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n2c). Двухроматидные хромосомы выстраиваются в экваториальной плоскости клетки, формируется метафазная пластинка.

Создаются предпосылки для третьей рекомбинации генетического материала – многие хроматиды мозаичные и от их расположения на экваторе зависит, к какому полюсу они в дальнейшем отойдут. К центромерам хроматид прикрепляются нити веретена деления.

Анафаза 2 (2n2с). Происходит деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), происходит третья рекомбинация генетического материала.

Телофаза 2 (1n1c в каждой клетке). Хромосомы деконденсируются, образуются ядерные оболочки, разрушаются нити веретена деления, появляются ядрышки, происходит деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. С его помощью поддерживается постоянство хромосомного набора – после слияния гамет не происходит его удвоения. Благодаря мейозу образуются генетически различные клетки, т.к. в процессе мейоза трижды происходит перекомбинация генетического материала: за счет кроссинговера (профаза 1), за счет случайного, независимого расхождения гомологичных хромосом (анафаза 1) и за счет случайного расхождения хроматид (анафаза 2).

Амитоз – прямое деление интерфазного ядра путем перетяжки без спирализации хромосом, без образования веретена деления. Дочерние клетки имеют неодинаковый генетический материал. Может ограничиваться только делением ядра, что приводит к образованию дву- и многоядерных клеток. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл. В норме наблюдается в высокоспециализированных тканях, в клетках, которым уже не предстоит делиться – в эпителии, печени.

Гаметогенез. Гаметы формируются в половых железах – гонадах. Процесс развития гамет называется гаметогенезом. Процесс образования сперматозоидов называется сперматогенезом, а образование яйцеклеток – овогенезом (оогенезом). Предшественники гамет – гаметоциты образуются на ранних стадиях развития зародыша за пределами половых желез, а затем мигрируют в них. В половых железах различают три разных участка (или зоны) – зона размножения, зона роста, зона созревания половых клеток. В этих зонах происходят фазы размножения, роста и созревания гаметоцитов. В сперматогенезе имеется еще одна фаза – фаза формирования.

Фаза размножения. Диплоидные клетки в этой зоне половых желез (гонад) многократно делятся митозом. Количество клеток в гонадах растет. Их называют оогонии и сперматогонии.

Фаза роста. В эту фазу происходит рост сперматогоний и оогоний, репликация ДНК. Образовавшиеся клетки называются ооциты 1-го порядка и сперматоциты 1-го порядка с набором хромосом и ДНК 2n4с.

Фаза созревания. Сущность этой фазы – мейоз. Гаметоциты 1-го порядка вступают в первое мейотическое деление. В результате образуются гаметоциты 2-го порядка (n2с), которые вступают во второе мейотическое деление, и образуются клетки с гаплоидным набором хромосом (nc) – яйцеклетки и округлые сперматиды. Сперматогенез включает еще фазу формирования, во время которой сперматиды превращаются в сперматозоиды.

Сперматогенез. Во время периода полового созревания диплоидные клетки в семенных канальцах семенников делятся митотически, в результате чего образуется множество более мелких клеток, называемых сперматогониями. Часть образовавшихся клеток может подвергаться повторным митотическим делениям, в результате чего образуются такие же клетки сперматогонии. Другая часть прекращает делиться и увеличивается в размерах, вступая в следующую фазу сперматогенеза – фазу роста.

Клетки Сертоли обеспечивают механическую защиту, опору и питание развивающихся гамет. Увеличившиеся в размерах сперматогонии называются сперматоцитами 1-го порядка. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу. Главными событиями фазы роста является репликация ДНК и накопление питательных веществ.

Сперматоциты 1-го порядка (2n4с) вступают в первое (редукционное) деление мейоза, после которого образуются сперматоциты 2-го порядка (n2c). Сперматоциты 2-го порядка вступают во второе (эквационное) деление мейоза и образуются округлые сперматиды (nc). Из одного сперматоцита 1-го порядка возникают четыре гаплоидные сперматиды. Фаза формирования характеризуется тем, что первично шаровидные сперматиды подвергаются ряду сложных преобразований, в результате которых образуются сперматозоиды.

Строение сперматозоида. Сперматозоид млекопитающих имеет форму длинной нити.

В период полового созревания мейоз возобновится: примерно каждый месяц под действием половых гормонов один из овоцитов 1-го порядка (редко два) будет доходить до метафазы 2 мейоза и овулировать на этой стадии. Мейоз может пройти до конца только при условии оплодотворения, проникновения сперматозоида, если оплодотворение не происходит, овоцит 2-го порядка погибает и выводится из организма.

Овогенез осуществляется в яичниках, подразделяется на три фазы – размножения, роста и созревания. Во время фазы размножения диплоидные овогонии многократно делятся митозом. Фаза роста соответствует интерфазе 1 мейоза, т.е. во время нее происходит подготовка клеток к мейозу, клетки значительно увеличиваются в размерах вследствие накопления питательных веществ. Главным событием фазы роста является репликация ДНК. Во время фазы созревания клетки делятся мейозом. Во время первого деления мейоза они называются овоцитами 1-го порядка. В результате первого мейотического деления возникают две дочерние клетки: мелкая, называемая первым полярным тельцем, и более крупная – овоцит 2-го порядка.

Если в овоцит проникает сперматозоид, второе мейотическое деление проходит до конца с образованием яйцеклетки и второго полярного тельца, а первое полярное тельце – с образованием третьего и четвертого полярных телец. Таким образом, в результате мейоза из одного овоцита 1-го порядка образуются одна яйцеклетка и три полярных тельца.

Строение яйцеклеток. Форма яйцеклеток обычно округлая. Размеры яйцеклеток колеблются в широких пределах – от нескольких десятков микрометров до нескольких сантиметров (яйцеклетка человека – около 120 мкм). К особенностям строения яйцеклеток относятся: наличие оболочек, располагающихся поверх плазматической мембраны; и наличие в цитоплазме более

или менее большого количества запасных питательных веществ. У большинства животных яйцеклетки имеют дополнительные оболочки, располагающиеся поверх цитоплазматической мембраны. В зависимости от происхождения различают: первичные, вторичные и третичные оболочки. Первичные оболочки формируются из веществ, выделяемых овоцитом и, возможно, фолликулярными клетками. Образуется слой, контактирующий с цитоплазматической мембраной яйцеклетки. Он выполняют защитную функцию, обеспечивает видовую специфичность проникновения сперматозоида, т. е. не позволяет сперматозоидам других видов проникать в яйцеклетку. У млекопитающих эта оболочка называется блестящей. Вторичные оболочки образуются выделениями фолликулярных клеток яичника. Имеются далеко не у всех яйцеклеток. Вторичная оболочка яиц насекомых содержит канал – микропиле, через который сперматозоид проникает в яйцеклетку. Третичные оболочки образуются за счет деятельности специальных желез яйцеводов. Например, из секретов особых желез формируются белковая, подскорлуповая пергаментная, скорлуповая и надскорлуповая оболочки у птиц и рептилий.

Вторичные и третичные оболочки, как правило, образуются у яйцеклеток животных, зародыши которых развиваются во внешней среде. Поскольку у млекопитающих наблюдается внутриутробное развитие, их яйцеклетки имеют только первичную, блестящую оболочку, поверх которой располагается лучистый венец – слой фолликулярных клеток, доставляющих к яйцеклетке питательные вещества.

В яйцеклетках происходит накопление запаса питательных веществ, которые называют желтком. Он содержит жиры, углеводы, РНК, минеральные вещества, белки, причем основную его массу составляют липопротеиды и гликопротеиды. Желток содержится в цитоплазме обычно в виде желточных гранул. Количество питательных веществ, накапливаемых в яйцеклетке, зависит от условий, в которых происходит развитие зародыша. Так, если развитие яйцеклетки происходит вне организма матери и приводит к формированию крупных животных, то желток может составлять более 95% объема яйцеклетки. Яйцеклетки млекопитающих, развивающиеся внутри тела матери, содержат малое количество желтка – менее 5%, так как питательные вещества, необходимые для развития эмбрионы получают от матери.

В зависимости от количества содержащегося желтка различают следующие типы яйцеклеток: алецитальные (не содержат желтка или имеют незначительное количество желточных включений – млекопитающие, плоские черви); изолецитальные (с равномерно распределенным желтком – ланцетник, морской еж); умеренно телолецитальные (с неравномерно распределенным желтком – рыбы, земноводные); резко телолецитальные (желток занимает большую часть, и лишь небольшой участок цитоплазмы на анимальном полюсе свободен от него – птицы).

В связи с накоплением питательных веществ, у яйцеклеток появляется полярность. Противоположные полюсы называются вегетативным и анимальным. Поляризация проявляется в том, что происходит изменение местоположения ядра в клетке (оно смещается в сторону анимального полюса), а также в особенностях распределения цитоплазматических включений (во многих яйцах количества желтка возрастает от анимального к вегетативному полюсу).

Яйцеклетка человека была открыта в 1827 году К.М.Бэром.

Оплодотворение. Оплодотворение – процесс слияния половых клеток, приводящий к образованию зиготы. Собственно процесс оплодотворения начинается в момент контакта сперматозоида и яйцеклетки. В момент такого контакта плазматическая мембрана акросомального выроста и прилежащая к ней часть мембраны акросомального пузырька растворяются, фермент гиалуронидаза и другие биологически активные вещества, содержащиеся в акросоме, выделяются наружу и растворяют участок яйцевой оболочки. Чаще всего сперматозоид полностью втягивается в яйцо, иногда жгутик остается снаружи и отбрасывается. С момента проникновения сперматозоида в яйцо гаметы перестают существовать, так как образуют единую клетку – зиготу. Ядро сперматозоида набухает, его хроматин разрыхляется, ядерная оболочка растворяется, и он превращается в мужской пронуклеус. Это происходит одновременно с завершением второго деления мейоза ядра яйцеклетки, которое возобновилось благодаря оплодотворению. Постепенно ядро яйцеклетки превращается в женский пронуклеус. Пронуклеусы перемещаются к центру яйцеклетки, происходит репликация ДНК, и после их слияния набор хромосом и ДНК зиготы становится 2n4c. Объединение пронуклеусов и представляет собой собственно оплодотворение. Таким образом, оплодотворение заканчивается образованием зиготы с диплоидным ядром.

В зависимости от количества особей, принимающих участие в половом размножении, различают: перекрестное оплодотворение – оплодотворение, в котором принимают участие гаметы, образованные разными организмами; самооплодотворение – оплодотворение, при котором сливаются гаметы, образованные одним и тем же организмом (ленточные черви).

Партеногенез – девственное размножение, одна из форм полового размножения, при котором из не происходит оплодотворения, из неоплодотворенной яйцеклетки развивается новый организм. Встречается у ряда видов растений, беспозвоночных и позвоночных животных, кроме млекопитающих, у которых партеногенетические зародыши погибают на ранних стадиях эмбриогенеза. Партеногенез может быть искусственным и естественным.

Искусственный партеногенез вызывается человеком путем активизации яйцеклетки воздействием на нее различными веществами, механическим раздражением, повышением температуры и т.д.

При естественном партеногенезе яйцо начинает дробиться и развиваться в эмбрион без участия сперматозоида, только под влиянием внутренних или внешних причин. При постоянном (облигатном) партеногенезе яйца развиваются только партеногенетически, например, у кавказских скальных ящериц. Все животные этого вида – только самки При факультативном партеногенезе зародыши развиваются и партеногенетически и половым путем. Классический пример – у пчел семяприемник матки устроен так, что она может откладывать оплодотворенные и неоплодотворенные яйца, из неоплодотворенных развиваются трутни. Оплодотворенные яйца развиваются в личинок рабочих пчел – недоразвитых самок, или в цариц – в зависимости от характера питания личинки. При циклическом партеногенезе происходит чередование партеногенеза с обычным половым размножением – все лето у дафний и тлей партеногенетическое размножение и рождаются только самки, а осенью появляются и самцы и самки и происходит половое размножение.

Партеногенетически могут размножаться и личинки некоторых животных, такой партеногенез называется педогенезом. Например, у сосальщиков наблюдается партеногенетическое размножение на стадии личинок.


Что нужно повторить для успешного изучения темы? § 47 – учебник для 9 класса; § 25 – учебник для 10 класса.

Гаметогенез – процесс развития и формирования половых клеток. Мы уже знаем, что половые клетки образуются мейозом. Впрочем, одним этим процессом формирование специализированных половых гамет не ограничивается. Поэтому изучается процесс гаметогенеза, в ходе которого на одной из стадий и будет происходить мейоз. У животных и человека гаплоидные гаметы образуются из диплоидных клеток половых желез. Половые железы подразделяются на 4 зоны, в каждой из которых происходят специфические процессы (табл. 4).
Процесс образования мужских половых клеток сперматозоидов (спермиев) носит название сперматогенез. Женские яйцеклетки образуются в процессе овогенеза (оогенеза). Между этими процессами есть некоторые отличия (рис. 18). Рассмотрим их на примере организма человека.
Гаплоидные гаметы образуются из диплоидных клеток половых желез. Мужские и женские половые железы имеют диплоидный набор хромосом (рис. 19), как и все клетки нашего тела. Гаметогенез условно можно поделить на четыре зоны:
1. Зона размножения – в ней происходит митоз, и диплоидных клеток половых желез просто становится больше.
2. Зона роста – интерфаза между митозом и мейозом, когда происходит репликация, и ДНК удваивается. К концу этой фазы каждая диплоидная клетка готова к делению, т. е. содержит хромосомы, состоящие из двух хроматид.
3. Зона созревания – происходит мейоз, по итогам которого из диплоидной материнской клетки половой железы формируются четыре гаплоидные клетки, несущие набор хромосом, пригодный для слияния, т. е. для оплодотворения.

Читайте также: