Двойное оплодотворение у цветковых растений

Добавил пользователь Алексей Ф.
Обновлено: 19.09.2024

Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы. У растений может происходить в воде (у высших споровых растений) и без воды (в высших семенных растений). В цветочных растений в этом процессе участвуют два спермия, поэтому оплодотворение будет двойным. Двойное оплодотворение - это процесс слияния двух спермиев с двумя различными клетками: один спермий сливается с яйцеклеткой, а второй - с центральной клеткой. Этот вид оплодотворения свойственный только цветочным растениям. В завязи пестика на семенной ножке расположен семенной зачаток, в котором выделяют покровы - интегумент и центральную часть - нуцелуса. На верхушке узкий канал - пыльцевход, что ведет к зародышевого мешка. И именно через это отверстие в большинстве цветочных растений пыльцевая трубка врастает в семенной зачаток. Достигнув яйцеклетки, кончик пыльцевой трубки разрывается, из него выходят два сперматозоиды, а вегетативная клетка разрушается. Один из спермиев сливается с яйцеклеткой с образованием зиготы, а второй - с центральной клеткой, из которой будет образовываться эндосперм с запасом питательных веществ. Таким образом, два сперматозоиды сливаются с двумя клетками зародышевого мешка, поэтому оплодотворение у цветковых растений получило название "двойное оплодотворение". С момента попадания пылинки на рыльце пестика в процесс двойного оплодотворения у разных растений проходит от 20-30 минут до нескольких суток. Итак, в семенном зачатке результате двойного оплодотворения у цветковых растений образуются зигота и оплодотворенная центральная клетка.


Опыления, двойное оплодотворение, образование семян и формирования проростка в цветочной растения: А - цветок. Б - ПИЛЯК с пыльцевыми зернами. В - пыльцевая зерно: 1 - вегетативная клетка; 2 - сперматозоиды. Г - пыльцевой трубки. Д - пестик. Е - семенной зачаток. Ж - зародышевый мешок 4 - яйцеклетка; 5 - центральная клетка. С - семя: 6 - семенная кожура; 7 - эндосперм; 8 - зародыш. И - проросток.

После оплодотворения первой делится оплодотворенная центральная клетка, которая дает начало особой ткани будущей семена - эндосперма . Клетки этой ткани заполняют зародышевый мешок и накапливают питательные вещества, которые пригодятся для развития зародыша семени (у злаков). В других растений (в фасоли, тыквы) питательные вещества могут откладываться в клетках первых листочков зародыша, которые называются семядолями. После накопления определенной части питательных веществ в эндосперме начинает свое развитие оплодотворенная яйцеклетка - зигота. Эта клетка делится много раз и постепенно формируется многоклеточный зародыш семени , который дает начало новому растению. Сформирован зародыш содержит зародышевую почечку, зародышевые листочки - семядоли, зачаточное стебель и зачаточный корешок. С покровов семенного зачатка образуется семенная кожура , которая защищает зародыш. Итак, после оплодотворения из семенного зачатка образуется семя, которая состоит из семенной кожуры, зародыша семени и запаса питательных веществ.

Многообразие растительного мира. Жизненные формы растений.

Среди растений есть такие, тело которых не расчленено на отдельные органы. Поэтому их называют низшими растениями. К низшим растениям относятся, например, водоросли. Но у большинства растений тело состоит из органов, например, таких как побег (стебель с листьями и почками) и корень. Такие растения называют высшими. К ним относятся мхи, папоротники, хвощи, плауны, семенные растения. Большинство высших растений встречаются на суше, но есть и такие, которые растут в водоёмах (ряска, рогоз, камыш, элодея).

Вообще мир растений разнообразен и велик, поэтому трудно перечислить даже те из них, с которыми человек соприкасается в своей жизни.

Одни растения радуют красивыми цветками и украшают наш дом, другие дают витамины, пищу, лекарства. Из древесины сосны, дуба и ели сделаны двери, полы, оконные рамы домов. Бумага для тетрадей и книг тоже получена в результате переработки растений.

Растения постоянно находятся с нами. Их можно видеть на подоконниках в школе, в кабинете биологии, во дворе у дома, на газонах, в огороде, в лесу, в поле и даже в реке, озере и море.

Одни растения живут очень долго, много лет, и поэтому их называют многолетними. Другие живут лишь несколько месяцев, не более одного года. Это однолетние растения.

В природе встречаются растения, у которых в первый год формируются только облиственные побеги и корни, а на второй год у них образуются цветоносные побеги и плоды. Это морковь, капуста, репа и др. Такие растения живут не один год, а два, поэтому их называют двулетними.

Общий внешний облик растений называют жизненной формой.

Жизненная форма тополя, ели, яблони – дерево; смородины, сирени, шиповника – кустарник; черника и брусника представляют собой кустарнички; пырей, клевер, лебеда, тюльпан, подсолнечник – травы.

Основные процессы в клетке (обмен веществ, размножение, дыхание, питание).

В клетке протекают основные процессы жизнедеятельности. Клетка дышит, питается, выделяет вещества, размножается, реагирует на воздействие внешней среды. В живой клетке цитоплазма все время двигается. Это обеспечивает перенос веществ, доставку нужных в определенном месте и отвод ненужных. Запасные вещества и ненужные обычно отводятся в вакуоли.

Движение цитоплазмы можно наблюдать под микроскопом при увеличении более чем в 300 раз. При этом можно видеть, как движутся зеленые пластиты (хлоропласты). Это свидетельствует о том, что цитоплазма движется.

Скорость движения цитоплазмы не одинакова. Она зависит от света, температуры и других факторов внешней среды. На ярком свету цитоплазма обычно двигается быстрее, так как активнее идет процесс синтеза органических веществ, а следовательно дыхания и обмена веществ. Таким образом растения реагируют на изменения окружающей среды.

Питание клетки — это множество различных химических реакций, в результате которых неорганические вещества преобразуются в органические — сахара, жиры, масла, белки и другие. Эти вещества могут оставаться в самой клетке, накапливаться в ней или использоваться. Могут выводиться из клетки.

Дыхание клетки обеспечивает ее энергией. В процессе дыхания протекает химическая реакция, в результате которой с помощью кислорода разлагается сложное органическое вещество и получается энергия, более простые вещества и углекислый газ.

Рост также является процессом жизнедеятельности клетки. Клетка увеличивается в размерах за счет увеличения объема вакуоли, цитоплазмы и растяжения клеточной стенки.

Обмен веществ — это все процессы образования и расщепления веществ в клетке. В обмен веществ входит питание, дыхание, выделение и др. Процессы обмена веществ протекают в разных частях клетки. Взаимосвязь обеспечивается движением цитоплазмы.

Еще одним процессом жизнедеятельности клетки является размножение. Клетка размножается делением. Деление клетки представляет собой сложный процесс, состоящий из последовательных этапов. При делении клетки хромосомы удваиваются, после чего делятся на две одинаковые части и расходятся в противоположные концы клетки. После этого делится уже цитоплазма, органоиды клетки распределяются примерно поровну, некоторые образуются заново в дочерней клетке.

Благодаря делению образуются ткани, осуществляется рост (в том числе и за счет их растяжения).

Голосеменные. Общая характеристика и значение. Рисунки.

При размножении голосеменные растения производят не споры, а семена, поэтому их относят к семенным растениям. Семенными растениями также являются цветковые, или покрытосеменные, растения. Отличие голосеменных от покрытосеменных связано с тем, что голосеменные не образуют плодов, их семена как бы ничем не покрыты, они лежат на поверхности чешуй шишек. Представителями голосеменных являются ель, сосна, лиственница, кедр и другие растения.

Семена голосеменных развиваются из семязачатков. Оплодотворение происходит внутри семязачатка, там же развивается зародыш. В отличие от спор, у семян есть запас питательных веществ, защита в виде семенной кожуры. Это дало преимущество голосеменным перед споровыми растениями.

Среди голосеменных нет трав. Все они деревья, кустарники (можжевельник, эфедра) или лианы.

У голосеменных развиты все ткани. Есть фотосинтезирующая, покровная, проводящая, механическая, запасающая и образовательная.

У большинства голосеменных листья имеют вид иголок (хвоинок) или чешуек. Среди голосеменных выделяют большую группу хвойных растений. Хвойные растения образуют леса, участвуют в почвообразовании, используется их древесина, хвоя, семена и др.

Около 150 млн лет назад хвойные преобладали в растительном покрове планеты.

Наиболее широко распространенными представителями хвойных в России являются сосна обыкновенная и ель обыкновенная, или европейская. Их строение, размножение, чередование поколений в цикле развития отражает характерные особенности всех хвойных.

Сосна обыкновенная —однодомное растение (рис. 9.3). В мае у основания молодых побегов сосны образуются пучки зеленовато-желтых мужских шишек длиной 4—6 мм и диаметром 3—4 мм. На оси такой шишки расположены многослойные чешуйчатые листочки, или микроспорофиллы. На нижней поверхности микроспорофиллов находятся два микроспорангия — пыльцевых мешка, в которых образуется пыльца. Каждое пыльцевое зерно снабжено двумя воздушными мешками, что облегчает перенос пыльцы ветром. В пыльцевом зерне имеются две клетки, одна из которых впоследствии, при попадании на семязачаток, формирует пыльцевую трубку, другая после деления образует два спермия.


Рис. 9.3. Цикл развития сосны обыкновенной: аветка с шишками; бженская шишка в разрезе; в — семенная чешуя с семязачатками; гсемязачаток в разрезе; д —мужская шишка в разрезе; епыльца; жсеменная чешуя с семенами; 1 — мужская шишка; 2молодая женская шишка; 3 — шишка с семенами; 4шишка после высыпания семян; 5 — пыльцевход; 6покров; 7пыльцевая трубка со спермиями; 8архегоний с яйцеклеткой; 9эндосперм.

На других побегах того же растения образуются женские шишки красноватого цвета. На их главной оси располагаются мелкие прозрачные кроющие чешуйки, в пазухах которых сидят крупные толстые, впоследствии одревесневающие чешуи. На верхней стороне этих чешуй расположено по два семязачатка, в каждом из которых развивается женский гаметофитэндосперм с двумя архегониями с крупной яйцеклеткой в каждом из них. На верхушке семязачатка, снаружи защищенного интегументом, имеется отверстие — пыльцевход, или микропиле.

Поздней весной или в начале лета созревшая пыльца разносится ветром и попадает на семязачаток. Через микропиле пыльца втягивается внутрь семязачатка, где и прорастает в пыльцевую трубку, которая проникает к архегониям. Образовавшиеся к этому времени два спермия по пыльцевой трубке попадают к архегониям. Затем один из спермиев сливается с яйцеклеткой, а другой отмирает. Из оплодотворенной яйцеклетки (зиготы) формируется зародыш семени, а семязачаток превращается в семя. Семена у сосны созревают на второй год, высыпаются из шишек и, подхваченные животными или ветром, переносятся на значительные расстояния.

По своему значению в биосфере и роли в хозяйственной деятельности человека хвойные занимают второе место после покрытосеменных, далеко превосходя все остальные группы высших растений.

Они помогают решать огромные водоохранные и ландшафтные задачи, служат важнейшим источником древесины, сырья для получения канифоли, скипидара, спирта, бальзамов, эфирных масел для парфюмерной промышленности, лекарственных и других ценных веществ. Некоторые хвойные культивируются как декоративные (пихты, туи, кипарисы, кедры и др.). Семена ряда сосен (сибирской, корейской, итальянской) употребляются в пищу, из них также получают масло.

Представители других классов голосеменных (саговниковые, гнетовые, гинкговые) встречаются значительно реже и менее известны, чем хвойные. Однако почти все виды саговниковых декоративны и пользуются широкой популярностью у садовников многих стран. Вечнозеленые безлистные невысокие кустарники эфедры (класс гнетовых) служат источником сырья для получения алкалоида эфедрина, который применяется как средство, возбуждающее центральную нервную систему, а также при лечении заболеваний аллергического характера.

Разнообразие растений. Особенности внешнего строения растений (семенные и споровые растения).

Растительный мир огромный и разнообразный. Растения отличаются между собой по многим признакам, в том числе по строению и размножению.

Среди растений есть очень простые, у которых нет отдельных органов, таких как корень, листья, стебель. К таким низшим растениям принадлежат различные водоросли. Если у растения есть листья, стебли и корни, то такое растение называют высшим. Самыми простыми высшими растениями являются мхи, потом идут папоротники, хвощи и плауны и семенные растения. Семенные растения бывают голосеменными и покрытосеменными. Все это отделы растений. Каждый отдел имеет свои особенности строения.

У споровых растений (мхов, папоротников, хвощей и плаунов) на побегах есть особые образования, в которых образуются споры. С помощью спор растения размножаются и расселяются. Споры представляют собой клетки шарообразной или овальной формы. Они легкие и сухие, поэтому легко разносятся ветром и текущей водой на большие расстояния. Когда спора попадает в благоприятные условия, она прорастает и дает начало новому растению. И уже на этих растениях, появившихся из спор, развиваются половые клетки.

семенные растения достигли своего расцвета в мезозойскую эру, когда климат стал более засушливым и холодным, появилась смена сезонов.

На многих из них вырастают цветки, из которых потом развиваются плоды с семенами внутри. Цветок, плод и семена относятся к генеративным органам растений. Генеративные органы служат растению для полового размножения. Не все растения, которые образуют семена, образуют при этом и цветки. Голосеменные растения образуют семена, но не образуют цветков. К голосеменным относятся хвойные растения. Среди прочих отличий их листья имеют форму игл. К таким растениям относятся сосна, ель, лиственница и др. Семена у них развиваются в шишках, где лежат на чешуях открыто. Поэтому эти растения и называют голосеменными. Те же растения, которые образуют и цветы и семена, называются цветковыми.

В генеративных органах семенных растений формируются мужские и женские гаметы (половые клетки). Женские гаметы образуются в завязи пестика цветка, мужские — в пыльце тычинок. Когда пыльца попадает на пестик, происходит опыление цветка, после происходит оплодотворение, образуются семена и плод.


Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Двойное оплодотворение у растений имеет большое биологическое значение. Оно было открыто Навашиным в 1898 г. Далее рассмотрим подробнее, как происходит двойное оплодотворение у растений.

двойное оплодотворение

Биологическое значение

Процесс двойного оплодотворения способствует активному развитию питательной ткани. В связи с этим семяпочка не запасает вещества впрок. Это, в свою очередь, объясняет ее быстрое развитие.

Схема двойного оплодотворения

Коротко явление можно описать следующим образом. Двойное оплодотворение у покрытосеменных растений состоит в проникновении в завязь двух спермиев. Один сливается с яйцеклеткой. Это способствует началу развития диплоидного зародыша. Второй спермий соединяется с центральной клеткой. В результате формируется триплоидный элемент. Из этой клетки появляется эндосперм. Он является питательным материалом для развивающегося зародыша.

Развитие пыльцевой трубки

Двойное оплодотворение у покрытосеменных начинается после образования гаплоидного сильно редуцированного поколения. Оно представлено гаметофитами. Двойное оплодотворение цветковых растений способствует прорастанию пыльцы. Оно начинается с разбухания зерна и последующего формирования пыльцевой трубки. Она прорывает спородерму в наиболее тонком ее участке. Называется он апертура. С кончика пыльцевой трубки выделяются специфические вещества. Они размягчают ткани столбика и рыльца. За счет этого в них входит пыльцевая трубка. По мере ее развития и роста, в нее переходят оба спермия и ядро от вегетативной клетки. В подавляющем большинстве случаев проникновение пыльцевой трубки в нуцеллус (мегаспорангий) происходит посредством микропиле семязачатка. Крайне редко это осуществляется другим способом. После проникновения в зародышевый мешок происходит разрыв пыльцевой трубки. В результате все ее содержимое изливается вовнутрь. Двойное оплодотворение цветковых растений продолжается формированием диплоидной зиготы. Этому способствует первый спермий. Второй элемент соединяется с вторичным ядром, которое расположено в центральной части зародышевого мешка. Образованное триплоидное ядро впоследствии трансформируется в эндосперм.

двойное оплодотворение цветковых растений

Формирование клеток: общие сведения

Процесс двойного оплодотворения цветковых растений осуществляется особыми половыми клетками. Их формирование происходит в два этапа. Первая стадия называется спорогенез, вторая – гематогенез. В случае образования мужских клеток эти этапы именуются микроспорогенез и микрогематогенез. При образовании женских половых элементов приставка меняется на "мега" (или "макро"). Спорогенез основывается на мейозе. Это процесс формирования гаплоидных элементов. Мейозу, так же как и у представителей фауны, предшествует размножение клеток посредством митотических делений.

Образование спермиев

Первичное формирование мужских половых элементов осуществляется в особой ткани пыльника. Она называется археспориальной. В ней в результате митозов происходит формирование многочисленных эелементов – материнских клеток пыльцы. Они и вступают затем в мейоз. Вследствие двух мейотических делений образуется 4 гаплоидные микроспоры. Некоторое время они лежат рядом, формируя тетрады. После этого происходит их распад на пыльцевые зерна - отдельные микроспоры. Каждый из образованных элементов начинает покрываться двумя оболочками: внешней (экзина) и внутренней (интина). Затем начинается следующий этап – микрогаметогенез. Он, в свою очередь, состоит из двух митотических последовательных делений. После первого формируется две клетки: генеративная и вегетативная. Впоследствии первая проходит еще одно деление. В результате образуется две мужские клетки – спермии.

двойное оплодотворение у покрытосеменных

Макроспорогенез и мегаспорогенез

В тканях семяпочки начинает обособляться один или несколько археспориальных элементов. Они начинают усиленно расти. Вследствие такой активности они становятся значительно крупнее остальных клеток, окружающих их в семяпочке. Каждый археспориальный элемент один, два или более раз подвергается делению митозом. В некоторых случаях клетка может сразу трансформироваться в материнскую. Внутри нее происходит мейоз. В результате него формируется 4 гаплоидные клетки. Как правило, самая крупная из них начинает развиваться, превращаясь в зародышевый мешок. Три оставшиеся постепенно дегенерируют. На данном этапе макроспорогенез завершается, начинается макрогематогенез. В ходе него происходят митотические деления (у большей части покрытосеменных их три). Цитокинез не сопровождает митозы. В результате трех делений формируется зародышевый мешок с восемью ядрами. Они впоследствии обосабливаются в самостоятельные клетки. Эти элементы распределяются определенным образом по зародышевому мешку. Одна из обособленных клеток, которая, собственно, является яйцеклеткой, совместно с двумя другими – синергидами, занимает место у микропиле, в которое осуществляется проникновение спермиев. В этом процессе синергиды исполняют очень значимую роль. В них содержатся ферменты, которые способствуют растворению оболочек на пыльцевых трубках. В противоположной стороне зародышевого мешка располагаются другие три клетки. Они именуются антиподами. С помощью этих элементов происходит передача из семяпочки питательных веществ в зародышевый мешок. Оставшиеся две клетки располагаются в центральной части. Зачастую они сливаются. В результате их соединения формируется диплоидная центральная клетка. После того как произойдет двойное оплодотворение, и в завязь проникнут спермии, один из них, как выше сказано было, сольется с яйцеклеткой.

двойное оплодотворение у покрытосеменных растений

Особенности пыльцевой трубки

процесс двойного оплодотворения

"Запрет" на самоопыление

Он достаточно часто наблюдается у цветковых растений. Это явление имеет свои особенности. "Запрет" на самоопыление проявляется в том, что спорофит "идентифицирует" собственного мужского гематофита и не допускает его к участию в оплодотворении. При этом в ряде случаев на рыльце пестика не происходит прорастания собственной пыльцы. Однако, как правило, рост трубки все-таки начинается, но впоследствии приостанавливается. В результате пыльца не достигает яйцеклетки и, как следствие, двойное оплодотворение не происходит. Еще Дарвиным было отмечено это явление. Так, он обнаружил у первоцвета весеннего цветки двух форм. Одни из них были длинностолбиковыми с короткими тычинками. Другие же – короткостолбиковыми. В них тычиночные нити были длинные. Короткостолбиковые растения отличаются крупной пыльцой (вдвое больше, чем у других). При этом клетки в сосочках рыльца – мелкие. Указанные признаки контролирует группа из тесно сплетенных генов.

схема двойного оплодотворения

Рецепторы

Двойное оплодотворение эффективно, когда пыльца переносится от одной формы к другой. За распознавание собственных элементов отвечают особые молекулы-рецепторы. Они представляют собой сложные соединения углеводов с белками. Установлено, что формы дикой капусты, не вырабатывающие в тканях рыльца эти молекулы-рецепторы, способны самоопыляться. Для нормальных растений характерно появление углеводно-белковых соединений за день до раскрытия цветка. Если открыть бутон и обработать его собственной пыльцой за двое суток до его распускания, то двойное оплодотворение произойдет. Если это сделать за день до открытия, то его не будет.

Аллели

Примечательно, что в ряде случаев "самонесовместимость" пыльцы в растениях устанавливается серией множественных элементов одного гена. Это явление похоже на несовместимость при пересадке ткани у животных. Такие аллели обозначают литерой S. Число в популяции этих элементов может достичь десятков или даже сотен. К примеру, если генотип растения, производящего яйцеклетки, - s1s2, а вырабатывающего пыльцу - s2s3, при перекрестном опылении прорастание будет отмечено только у 50% пылинок. Это будут те, которые несут аллель s3. Если элементов несколько десятков, то большая часть пыльцы прорастет нормально при перекрестном опылении, при этом самоопыление предотвращается полностью.

 процесс двойного оплодотворения цветковых растений

В заключение

В отличие от голосеменных, для которых характерно развитие достаточно мощного гаплоидного эндосперма вне зависимости от оплодотворения, у покрытосеменных ткань образуется только в этом единственном случае. Учитывая огромное количество поколений, таким образом достигается значительная экономия энергии. Повышение степени плоидности эндосперма, по всей видимости, способствует более скорому росту ткани в сравнении с диплоидными слоями спорофита.

opyilenie

Опыление и оплодотворение растений. Половое размножение


Половое размножение характерно для большинства растений, за исключением некоторых водорослей.

Опыление — это перенос пыльцы с тычинок на рыльце пестика. Различают перекрестное опыление и самоопыление (рис.1).

виды опыления

Рис.1 Виды опыления цветковых растений

При самоопылении происходит перенос пыльцы с тычинок на рыльце пестика в пределах одного и того же цветка.

В природе самоопыление происходит редко, зачастую еще в бутонах, до раскрытия цветка (пшеница, горох, фасоль, фиалка, томат). Главное преимущество самоопыления — оно не зависит от погодных условий и насекомых, поэтому осуществляется при любых условиях. Не все обоеполые цветки являются самоопыляющимися. Большинство растений дают полноценные семена только при перекрестном опылении.

Опыление, при котором пыльца тычинок одного цветка попадает на рыльце пестика другого, называют перекрестным. Перекрестное опыление осуществляется насекомыми и ветром. Реже — птицами, летучими мышами и водой.

Строение цветков насекомоопыляемых растений разнообразно (вишня, слива, яблоня, сирень, роза и многие другие). Они имеют ярко окрашенный или белый венчик и сильный запах. Цветки крупные или собраны в соцветия.

Запах цветков и их яркая окраска привлекают насекомых. Пчелы, шмели, мухи, бабочки, жуки и муравьи питаются пыльцой и нектаром цветка. Нектарники, расположенные в глубине цветка, выделяют нектар до тех пор, пока цветок не завянет. Тело насекомого, пытающегося добраться до нектарников, обильно покрывается пыльцой. Перелетая с одного цветка на другой в поисках пищи, они переносят прилипшую к их телу пыльцу с тычинок одних цветков на рыльца пестиков других.

Опыление ветром возникло в процессе эволюции как приспособление к неблагоприятным условиям. Надежда на немногочисленных тогда мух, бабочек, пчел и других насекомых была слабой. Позже насекомых стало больше. Но наряду с насекомоопыляемыми растениями, существуют опыляемые ветром. Это многие злаковые травы лугов, степей и саванн, обитатели леса (береза, ольха, осина, дуб, орешник), пустынь и полупустынь (полыни, солянки) (рис.2).

У ветроопыляемых растений бывает очень много пыльцы. Она легкая, сухая и мелкая. Околоцветник отсутствует или плохо развит и не препятствует движению ветра. Перистые рыльца пестиков приспособлены к улавливанию пыльцы. Тычиночные нити длинные и свисающие. Раскачиваясь на ветру, они распыляют зрелую пыльцу.

Большинство ветроопыляемых растений цветет до распускания листьев, что облегчает опыление. Но оно зачастую зависит от погоды. В облачные, дождливые дни осадки смывают пыльцу и тем самым снижают урожай.

Искусственное опыление осуществляет человек, перенося пыльцу с тычинок на рыльца пестиков. Такое опыление требует больших затрат времени и трудно осуществимо на больших площадях. Чаще всего к нему прибегают при выведении новых сортов.

Оплодотворение (рис.2) происходит после опыления.Пыльца, или пыльцевое зерно, попав на рыльце пестика, выделяющего липкую жидкость, прорастает, образуя длинную, тонкую пыльцевую трубку. Пыльцевая трубка, постепенно удлиняясь, продвигается по столбику рыльца по направлению к завязи (нижняя, важнейшая часть пестика). В завязи образуются семязачатки (семяпочки). Снаружи они защищены покровами, а внутри находится зародышевый мешок, состоящий из нескольких клеток.

двойное-оплодотворение

Рис.2 Процесс двойного оплодотворения

Одна из клеток в зародышевом мешке — яйцеклетка, это женская половая клетка (женская гамета). Другая — крупная центральная клетка.

В пыльцевой трубке находятся две маленькие мужские половые клетки (мужские гаметы) — спермии. Когда пыльцевая трубка достигает семязачатка и врастает в него, один спермий сливается с яйцеклеткой. Слияние двух половых клеток (гамет) называется оплодотворением. Из оплодотворенной яйцеклетки впоследствии разовьется зародыш растения. Второй спермий сливается с крупной центральной клеткой. Из нее образуется ткань эндосперм. В клетках этой ткани накапливаются питательные вещества для развития зародыша. Покровы семязачатка превращаются в семенную кожуру. Таким образом два одинаковых спермия сливаются с двумя разными женскими гаметами. Происходит двойное оплодотворение (открыл у лилейных русский ученый в 1898 г. Г.Навашин). После оплодотворения образуется семя, которое состоит из зародыша, запасающей ткани (эндосперма) и семенной кожуры. Из стенки завязи образуется плод.

Опыление — перенос пыльцы на рыльце пестика. Бывает самоопыление — внутри закрытого цветка (горох, пшеница) и перекрестное: насекомыми — цветки яркие, с запахом (яблоня, сирень, роза); ветром — цветки без околоцветника, распускаются до появления листьев, много мелкой легкой пыльцы (береза, дуб, полынь). Искусственное опыление проводит человек. После опыления происходит оплодотворение — процесс слияние мужских и женских половых клеток — гамет. Двойное оплодотворение — два спермия из пыльцы, достигнув завязи пестика по пыльцевой трубке, оплодотворяют две женские гаметы. При слиянии яйцеклетки и спермия образуется зародыш. При слиянии второго спермия и центральной клетки образуется эндосперм (запас питательных веществ). Из покровов семязачатка образуется кожура семени, а из стенки завязи пестика — плод.

Есаян Нарине Амиковна

(1 слайд)Этот процесс, характерный для всех покрытосеменных. Значение двойного оплодотворения заключается в том, что обеспечивается активное развитие питательной ткани уже после оплодотворения. Поэтому семяпочка у покрытосеменных не запасает питательных веществ впрок и, следовательно, развивается гораздо быстрее, чем у многих других растений, например у голосеменных.

Явление открыто русским учёным С. Г. Навашиным в 1898 на 2 видах растений — лилии (Lilium martagon) и рябчике (Fritillaria orientalis)

(2 слайд)Гаметы цветковых растений образуются в главных частях цветка – тычинках и пестиках.

(3 слайд)В пыльниках тычинок формируется пыльца, внутри которой развиваются мужские половые клетки.

(4 слайд)Женские половые клетки – яйцеклетки – образуются в семязачатках завязи пестика.

(5 слайд)В результате опыления пыльца попадает на рыльце пестика и прорастает.

Одна пыльцевая клетка вытягивается и образует пыльцевую трубку. В ней по цитоплазме двигаются два спермия.

(6 слайд)Продвигаясь сквозь ткани рыльца и столбика пестика, пыльцевая трубка достигает завязи и прорастает в семязачаток.

(7 слайд)Там спермий сливается с яйцеклеткой, образуя зиготу – из нее сформируется зародыш нового растения.

Второй спермий сливается с центральной клеткой. Образовавшаяся клетка делится и из нее в дальнейшем сформируется эндосперм – питательная ткань для зародыша.

(8 слайд)В результате двойного оплодотворения из семязачатка сформируется семя.

(9 слайд)Из зиготы образуется зародыш семени, из оболочек семязачатка – семенная кожура.

(10 слайд)Биологический смысл двойного оплодотворения весьма велик:

В отличие от голосеменных , триплоидный эндосперм образуется лишь в случае оплодотворения. С учетом гигантского числа поколений этим достигается существенная экономия энергетических ресурсов. Увеличение уровня плоидности эндосперма до 3n способствует более быстрому росту ткани по сравнению с диплоидными тканями спорофита

Предварительный просмотр:

Подписи к слайдам:

Двойное оплодотворение – Характерно для всех покрытосеменных Заключается в том, что обеспечивается активное развитие питательной ткани уже после оплодотворения Открыто русским учёным С. Г. Навашиным в 1898 на 2 видах растений — лилии ( Lilium martagon ) и рябчике ( Fritillaria orientalis )

Главные части цветка:

Пыльца формируется в пыльниках В пыльце формируются мужские половые клетки

Женские половые клетки (яйцеклетки) образуются в семязачатках в завязи пестика

Биологический смысл двойного оплодотворения весьма велик: В отличие от голосеменных , триплоидный эндосперм образуется лишь в случае оплодотворения С учетом гигантского числа поколений этим достигается существенная экономия энергетических ресурсов Увеличение уровня плоидности эндосперма до 3n способствует более быстрому росту ткани по сравнению с диплоидными тканями спорофита

Читайте также: