Что защищает внутренние части листа от высыхания и повреждения

Добавил пользователь Дмитрий К.
Обновлено: 19.09.2024

Лист является важным органом любого растения. Основные функции листа — фотосинтез и транспирация. Строение листа характеризуется наличием черешка и листовой пластинки. Внешне черешок похож на стебель, однако по происхождению он все же является частью листа.

Лист по строению предполагает наличие кожицы, которой покрыта поверхность любого листа. Кожица является защитой от различных повреждений, высыхания и попадания внутрь болезнетворных бактерий.

Строение кожицы листа характеризуется тем, что ее клетки плотно примыкают друг к другу: это объясняется тем, что они являются покрывной тканью. Почти все клетки в листах не имеют цвета и прозрачные, поэтому свет без проблем проникает через поверхность листка в клетку. Как видим, строение листьев и строение клетки листа напрямую связаны с функциями листьев и формируют их особенности.

Начинают изучать клеточное строение листа в 6 классе школы.Контент.

Характеристика эпидермиса

Эпидермис — это то, чем лист покрыт снаружи.

Эпидермис является живой тканью листа и может состоять из одного или нескольких слоев клеток.

Такие клетки листа обычно не отличаются хорошо дифференцированными хлоропластами. Клетки соединены между собой достаточно плотно, благодаря чему эпидермис защищает ткани листа от чрезмерной потери воды и играет важную роль в осуществлении листом функции механической опоры.

Эпидермис имеет особенность в виде различных выростов на внешней поверхности клеток: волосков, кутикул, шипиков.

Также стоит упомянуть устьица листа, которые находятся между клетками эпидермиса. Основная функция устьиц — осуществление водо- и газообмена растения с окружающей средой. Эта функция выполняется, в том числе, за счет особенностей строения устьица листа.

Характеристика мезофилла

Мезофилл — основная ткань, которая размещается между верхним и нижним эпидермисом.

Она представляет собой фотосинтезирующую ткань: в нее входят живые клетки с большим количеством хлоропластов.

Мезофилл делится на губчатую и палисадную паренхиму. Последняя включает клетки, расположенные перпендикулярно к поверхности эпидермиса — они напоминают ряд столбиков (столбчатая паренхима). У клеток палисадной паренхимы призматическая форма, эти клетки удлинены. Расположение палисадной паренхимы — под эпидермисом. При этом у одних растений она располагается только в верхней стороне листа, а у других — с обеих сторон.

Разделение или дифференциация мезофилла основана на виде растения и специфике его выращивания. При ярком освещении хорошее развитие получает палисадная паренхима.

Злаковые умеренной зоны не имеют деления на палисадную и губчатую паренхимы.

Эти две ткани устроены по-разному, так как они отвечают за разные функции. И здесь мы найдем ответ на вопрос, как строение листа обеспечивает его фотосинтезирующие функции.

Палисадная паренхима является высокоспециализированной тканью и выполняет функцию фотосинтеза. Это логично, ведь большинство хлоропластов располагаются именно в этой ткани и концентрируются около стенок клетки — так они лучше освещаются и снабжаются углекислым газом.

Губчатая паренхима помимо функции фотосинтеза (хоть и в меньшей степени) выполняет запасающую функцию: в клетках листа скапливается запасной крахмал.

Характеристика проводящей ткани

Проводящая ткань листа включает сосудисто-волокнистые пучки: они сконцентрированы в жилках. По этим пучкам в лист попадает вода, насыщенная питательными веществами, и отводятся продукты фотосинтеза.

Проводящая ткань пластинки и черешка листа и проводящая система стебля образуют единое целое. Строение жилки листа может характеризоваться как одним пучком, так и целой группой пучков, тесно между собою сомкнутых.

Сосудисто-волокнистые пучки основных жилок листа отличаются типичным строением. По мере раздробления пучков сосуды и ситовидные трубки уменьшаются. В едва заметных разветвлениях жилок нет флоэмы. Ксилема также упрощается: в ней отсутствует трахея, сокращается количество трахеид. На концах жилок — одиночные трахеиды.

То, насколько крепкая листовая пластинка, зависит от развития системы механических тканей. В нее входят:

  • склеренхимные обкладки пучков;
  • тяжи механической ткани. Они размещаются против проводящих пучков и смыкаются позади склеренхимных обкладок;
  • каменистые клетки;
  • опорные клетки и др.

Функции устьица и его строение

Устьице по форме напоминает щель, которая располагается между двумя клетками со специфическим строением.

Эти клетки серповидные, между собой они смыкаются противоположными концами (замыкающие клетки). Они существенно отличаются от других клеток эпидермиса: по форме и наличию хлоропластов.

Устьица располагаются с нижней части листовой пластинки. Однако есть растения, у которых оно расположено в верхней части (злаки, капуста).

Устьица водных растений располагаются только в верхней стороне пластинки.

Число устьиц на листьях растений варьируется от 40 до 600 (на один квадратный миллиметр).

Листья с параллельным жилкованием (такие есть у хвойных растений) размещаются параллельными рядами. У других растений какого-либо конкретного порядка нет.

Устьица открываются по разным причинам:

  • для осуществления газообмена;
  • для фотосинтеза и дыхания листа;
  • для контроля над водным балансом.

То, как осуществляется устьичное движение, определяется особенностями структуры замыкающих клеток, а также изменениями их тургорного давления. Неравномерное утолщение оболочек — отличительная характеристика строения замыкающих клеток устьиц. Это приводит к тому, что задняя стенка замыкающей клетки с увеличением тургора выпячивается в сторону щели, поскольку эта стенка отличается большей эластичностью и небольшой толщиной. При этом передняя стенка выпрямляется и становится вогнутой, а вся клетка изгибается в противоположную от щели сторону. Происходит открытие устьица.

Тургорное давление замыкающих клеток меняется в связи с большими затратами энергии. Регуляция осмотического давления замыкающих клеток осуществляется при помощи органических кислот, одновалентных катионов, в частности — калия.

Когда одновалентные катионы поступают в вакуоль замыкающих клеток, то осмотический потенциал последних увеличивается. В эти клетки поступает вода, и устьице открывается. Снижение осмотического давления происходит в результате выхода осмотических активных веществ из вакуолей в цитоплазму замыкающих клеток или из вообще из клетки. Устьице закрывается.

Поддержание электронейтральности замыкающих клеток при открытых устьицах обеспечивается образованием органических анионов.

Процесс поступления воды в клетку

Поступление воды в клетку — непростой процесс, который обусловлен множеством факторов.

Вся система коллоидов цитоплазмы принимает активное участие в поглощении воды.

Сосущая сила — сила насасывания клеткой воды.

Есть опыт, который помогает понять, как происходит поступление воды в живую клетку, а также показывает полупроницаемость и эластичность цитоплазмы.

К оборотной стороне покровного стекла, вплотную к нему, подносят фильтровальную бумагу: она оттягивает воду до того момента, пока раствор селитры полностью ее не заменит, входя под покровное стекло.

Спустя определенное время даже при небольшом увеличении микроскопа можно обнаружить отхождение протопласта от оболочки клетки. Такой процесс называется плазмолизом.

Далее протопласт округляется и размещается в середине клетки или возле одной из ее стенок. Происходит это после его отделения от всей внутренней поверхности оболочки. В результате происходит заполнение пространства между протопластом и оболочками клетки раствором плазмолитика.

Как клетка листа испаряет воду

Транспирация — испарение воды растениями.

Воду испаряет вся поверхность растения, но особенно интенсивно — лист.

Есть два вида транспирации:

  1. Кутикулярная. В этом случае воду испаряет вся поверхность листа.
  2. Устьичная. Испарение осуществляется через устьице листа.

Транспирация важна тем, что благодаря ей внутрь листа поступает углекислый газ, а это — основа углеродного питания растения. Кроме того, благодаря транспирации лист не перегревается.


Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани.

Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм:

группа клеток —> ткань —> орган —> организм

У растений различают 6 видов тканей: образовательную, покровную, основную, опорную, проводящую и выделительную.

Содержание

1.Образовательная ткань

Образовательная ткань находится на верхушке побега и на верхушке корня. Ее клетки плотно прилегают друг к другу. У них тонкие оболочки. За счет деления клеток растения растут.

Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев — функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей.

Со временем клетки утрачивают способность делиться. Они становятся клетками постоянных тканей, таких как покровные, основные, проводящие и др.

виды образовательной ткани

2.Покровная ткань

Покровная ткань формируется на поверхности органов. Она представлена кожицей, пробкой и коркой. Защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды.

Клетки кожицы — эпидермис — образуются на всех молодых органах растений. Эпидермис обеспечивает газообмен, испарение, всасывание, предохраняет органы растений от высыхания.

Но для зимующих растений это ненадежная защита. Вместо него перед наступлением зимы образуется пробка. Эта многослойная ткань состоит из мертвых, плотно прилегающих друг к другу клеток. Она защищает растения.

Корка — это наружная часть коры. Как и пробка, она состоит из мертвых клеток и защищает стволы и ветви от излишнего испарения, перегрева, вымерзания, ожога солнечными лучами, объедания животными.

виды покровной ткани

3.Основная ткань

Основная ткань состоит из живых клеток и образует основу всех органов растения.

В зависимости от функции она подразделяется на фотосинтезирующую и запасающую.

Клетки фотосинтезирующей ткани содержат хлоропласты. В них осуществляется фотосинтез. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

Запасающая ткань плодов, семян, стеблей, луковиц, листьев, корнеплодов, корневищ участвует в накоплении питательных веществ, которые необходимы прежде всего многолетним растениям.

Часть клеток основной ткани служит для запасания воды. Водоносная ткань содержится в основном в стеблях и листьях растений пустынных мест обитания и солончаков, например в стеблях кактусов или листьях алоэ.

Воздухоносная ткань рыхлая. У нее хорошо развиты межклеточные пространства (межклетники), в которые проникает воздух. Особенно хорошо они сформированы у растений, произрастающих в воде (водные и болотные) и на глинистой почве.

По воздухоносным межклетникам кислород доставляется к тем частям растения, связь которых с атмосферой затруднена.

виды основной ткани

Основная ткань (фотосинтезирующая и запасающая)

4.Опорная или механическая ткань

Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры Она находится в стеблях, листьях и плодах растений. Опорная ткань придает упругость и прочность всем органам растений.

Поэтому при сильном ветре не ломаются хрупкие стебли, не разрываются большие листовые пластинки и листья не срываются с деревьев.

виды опорной ткани

Опорная (механическая) ткань

В мякоти плодов груши, айвы, рябины, в семенах пальмы, в косточках вишни, сливы, абрикоса, персика встречаются каменистые клетки. Они тоже являются опорной тканью.

В органах молодых растений опорная ткань развивается не сразу. Например, косточки незрелых фруктов — сливы, вишни, абрикоса — мягкие, беловатого цвета. По мере созревания плодов их оболочка темнеет и становится твердой.

Семена от повреждений защищает опорная ткань, состоящая сначала из живых клеток. Позже они теряют цитоплазму, стенки утолщаются и древеснеют.

В размещении механической ткани в растительных органах существует особая закономерность. Изучая ее, человек учится у растений создавать прочные, экономичные, радующие глаз здания, башни, мосты, которые к тому же будут естественно вписываться в окружающую среду.

5.Проводящая ткань

Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. Она состоит из двух частей.

Одна часть — ксилема, или древесина, — обеспечивает восходящий поток и доставляет воду и минеральные соли от корней в надземную часть растения.

Клетки древесины представляют собой полые трубки (сосуды) с одеревеневшими мертвыми стенками. В сосудах имеются отверстия, через которые вдоль всего сосуда осуществляется движение жидкости.

Другая часть — флоэма, или луб, — обеспечивает нисходящий поток, т. е. проведение образовавшихся в листьях органических веществ в подземные органы. В состав луба входят ситовидные трубки и клетки-спутницы. Луб и древесина расположены в стебле, корне, жилках листьев.

ксилема флоэма

Проводящие ткани: Ксилема и Флоэма.

Органические вещества, образованные в листьях, доставляются к стеблям, корням, точкам роста, плодам, семенам по ситовидным трубкам. Клетки ситовидных трубок живые.

В поперечных перегородках члеников ситовидных трубок имеется большое количество мелких отверстий, как в сите.

У растений элементы проводящей, опорной и запасающей тканей образуют проводящие, или сосудисто-волокнистые, пучки. Они хорошо видны в листьях в виде жилок, распространены в стебле, корнях и плодах.

ситовидные трубки

Осенью отверстия перегородок ситовидных трубок затягиваются мозолистым веществом, и ток органических веществ по трубке прекращается. Растение впадает в состояние покоя.

Весной мозолистое вещество растворяется, и ток по ситовидным трубкам возобновляется. Проводящая ткань осуществляет связь между корнем и побегом.

6.Выделительная ткань

Известно, что у растений нет специальных выделительных органов, как у животных. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски, нектарники и т. д.

Растения выделяют ароматические и сахаристые вещества, привлекающие насекомых-опылителей. Эфирные масла защищают растения от поедания травоядными животными.

смоляные ходы

Строение растительной клетки
Увеличительные приборы

Группы клеток, сходные по строению, происхождению и выполняемым функциям, образуют ткани. Из тканей построены органы и системы органов. Разные органы растений вместе образуют единый организм. Рост побега в длину и разрастание листьев, утолщение стеблей и корней, восстановление поврежденных мест деревьев функции образовательной ткани. Из клеток образовательной ткани образуются все другие виды тканей. Покровная ткань защищает растения от высыхания, солнечных ожогов, неблагоприятных условий внешней среды. Основная ткань состоит из живых клеток и образует основу всех органов растения. Опорная, или механическая, ткань выполняет у растений функцию каркаса, опоры.
Функции проводящей ткани заключаются в проведении воды и питательных веществ из одного органа растения в другой. У растений нет специальных выделительных органов. Но выделительные ткани есть у большинства растений. Ими представлены смоляные и эфирно-масляные ходы, железы, железистые волоски.

Верный ответ: 2) эпидерма
Эпидерма (или кожица) покровный слой клеток листа, обеспечивает защиту от механических повреждений. Эндосперм - запас питательных веществ для зародыша. Кожура - покровный слой семени, обеспечивает его защиту. Чешуя - специальный пластинки на теле некоторых позвоночных, в первую очередь, обеспечивает защиту тела от хищников и уменьшает испарение с кожи.

Биология - наука, изучающая живую природу
Строение растений изучает наука ботаника
Организм растения состоит из корня и побега
Главные части цветка пестик и тычинки
Главный признак плода наличие семян
Плодом нельзя назвать кочан капусты
Клеточное строение имеют все растения
Корневая система состоит из всех корней растения
Фотосинтез происходит только на свету
К низшим растениям относятся водоросли
В половом размножении растений принимают участвуют гаметы
К классу двудольных растений относят растения, у которых зародыш имеет 2 семядоли
Готовыми органическими веществами питаются грибы

Из почвы растения всасывают воду, с растворенными минеральными веществами, необходимыми для нормального развития растения и процесса фотосинтеза, также, для этого процесса растение использует энергию солнечного света. Потребляет из окружающего воздуха кислород для дыхания и углекислый газ для фотосинтеза. Помимо этого, испаряет лишнюю влагу и выделяет кислород, образовавшийся в результате фотосинтеза.

Покрыто семёные могут распространятся любым способом
хвойные чаще используются в строительстве из зи свойств

Читайте также: