Биология селекция и возделывание подсолнечника тихонов

Добавил пользователь Дмитрий К.
Обновлено: 18.09.2024

Это наука о создании новых и улучшении существующих пород животных, сортов растений, штаммов микроорганизмов. В основе селекции лежат такие методы, как гибридизация и отбор. Теоретической основой селекции является генетика.

Для успешного решения задач, стоящих перед селекцией, академик Н.И. Вавилов особо выделял значение изучения сортового, видового и родового разнообразия культур; изучения наследственной изменчивости; влияния среды на развитие интересующих селекционера признаков; знаний закономерностей наследования признаков при гибридизации; особенностей селекционного процесса для само- или перекрестноопылителей; стратегии искусственного отбора.

Породы, сорта, штаммы — искусственно созданные человеком популяции организмов с наследственно закрепленными особенностями: продуктивностью, морфологическими, физиологическими признаками.

Каждая порода животных, сорт растений, штамм микроорганизмов приспособлены к определенным условиям, поэтому в каждой зоне нашей страны имеются специализированные сортоиспытательные станции и племенные хозяйства для сравнения и проверки новых сортов и пород.

Для успешной работы селекционеру необходимо сортовое разнообразие исходного материала. Во Всесоюзном институте растениеводства Н.И. Вавиловым была собрана коллекция сортов культурных растений и их диких предков со всего земного шара, которая в настоящее время пополняется и является основой для работ по селекции любой культуры.

Центры происхождения культурных растений, выявленные Н.И. Вавиловым

Центры происхождения Местоположение Культивируемые растения
1. Южноазиатский тропический Тропическая Индия, Индокитай, о-ва Юго-Восточной Азии Рис, сахарный тростник, цитрусовые, баклажаны и др. (50% культурных растений)
2. Восточноазиатский Центральный и Восточный Китай, Япония, Корея, Тайвань Соя, просо, гречиха, плодовые и овощные культуры — слива, вишня и др. (20% культурных растений)
3. Юго-Западноазиатский Малая Азия, Средняя Азия, Иран, Афганистан, Юго-Западная Индия Пшеница, рожь, бобовые культуры, лен, конопля, репа, чеснок, виноград и др. (14% культурных растений)
4. Средиземноморский Страны по берегам Средиземного моря Капуста, сахарная свекла, маслины, клевер (11% культурных растений)
5. Абиссинский Абиссинское нагорье Африки Твердая пшеница, ячмень, бананы, кофейное дерево, сорго
6. Центральноамериканский Южная Мексика Кукуруза, какао, тыква, табак, хлопчатник
7. Южноамериканский Западное побережье Южной Америки Картофель, ананас, хинное дерево

Наиболее богатыми по количеству культур являются древние центры цивилизации. Именно там наиболее ранняя культура земледелия, более длительное время проводятся искусственный отбор и селекция растений.

Классическими методами селекции растений были и остаются гибридизация и отбор. Различают две основные формы искусственного отбора: массовый и индивидуальный.

Массовый отбор

Массовый отбор применяют при селекции перекрестноопыляемых растений (рожь, кукуруза, подсолнечник). В этом случае сорт представляет собой популяцию, состоящую из гетерозиготных особей, и каждое семя обладает уникальным генотипом. С помощью массового отбора сохраняются и улучшаются сортовые качества, но результаты отбора неустойчивы в силу случайного перекрестного опыления.

Индивидуальный отбор

Индивидуальный отбор применяют при селекции самоопыляемых растений (пшеница, ячмень, горох). В этом случае потомство сохраняет признаки родительской формы, является гомозиготным и называется чистой линией. Чистая линия — потомство одной гомозиготной самоопыленной особи. Так как постоянно происходят мутационные процессы, то абсолютно гомозиготных особей в природе практически не бывает. Мутации чаще всего рецессивны. Под контроль естественного и искусственного отбора они попадают только тогда, когда переходят в гомозиготное состояние.

Естественный отбор

Этот вид отбора играет в селекции определяющую роль. На любое растение в течение его жизни действует комплекс факторов окружающей среды, и оно должно быть устойчивым к вредителям и болезням, приспособлено к определенному температурному и водному режиму.

Инбридинг (инцухт)

В центре гете­розис­ная куку­руза, слева и справа роди­тель­ские особи.

Р ♀ AAbbCCdd × ♂ aaBBccDD
F1 AaBbCcDd

Гипотеза сверхдоминирования объясняет явление гетерозиса эффектом сверхдоминирования. Сверхдоминирование — вид взаимодействия аллельных генов, при котором гетерозиготы превосходят по своим характеристикам (по массе и продуктивности) соответствующие гомозиготы. Начиная со второго поколения гетерозис затухает, так как часть генов переходит в гомозиготное состояние.

Растения диплоид­ной (2n = 16) и тетра­плоидной (2n = 32) гре­чихи.

Аа × Аа
АА 2 Аа аа

Перекрестное опыление самоопылителей дает возможность сочетать свойства различных сортов. Например, при селекции пшеницы поступают следующим образом. У цветков растения одного сорта удаляются пыльники, рядом в сосуде с водой ставится растение другого сорта, и растения двух сортов накрываются общим изолятором. В результате получают гибридные семена, сочетающие нужные селекционеру признаки разных сортов.

Метод получения полиплоидов. Полиплоидные растения обладают большей массой вегетативных органов, имеют более крупные плоды и семена. Многие культуры представляют собой естественные полиплоиды: пшеница, картофель, выведены сорта полиплоидной гречихи, сахарной свеклы.

Виды, у которых кратно умножен один и тот же геном, называются автополиплоидами. Классическим способом получения полиплоидов является обработка проростков колхицином. Это вещество блокирует образование микротрубочек веретена деления при митозе, в клетках удваивается набор хромосом, клетки становятся тетраплоидными.

Отдаленная гибридизация

Восстановление плодови­тости капустно-­редечного гибрида: 1 — капуста; 2 — редька; 3, 4 — капустно-­редечный гибрид.

Отдаленная гибридизация — это скрещивание растений, относящихся к разным видам. Отдаленные гибриды обычно стерильны, так как у них нарушается мейоз (два гаплоидных набора хромосом разных видов не могут конъюгировать) и, следовательно не образуются гаметы.

Использование соматических мутаций

Соматические мутации применяются для селекции вегетативно размножающихся растений. Это использовал в своей работе еще И.В. Мичурин. С помощью вегетативного размножения можно сохранить полезную соматическую мутацию. Кроме того, только с помощью вегетативного размножения сохраняются свойства многих сортов плодово-ягодных культур.

Экспериментальный мутагенез

Основан на открытии воздействия различных излучений для получения мутаций и на использовании химических мутагенов. Мутагены позволяют получить большой спектр разнообразных мутаций. Сейчас в мире созданы более тысячи сортов, ведущих родословную от отдельных мутантных растений, полученных после воздействия мутагенами.

Методы селекции растений, предложенные И.В. Мичуриным

С помощью метода ментора И.В. Мичурин добивался изменения свойств гибрида в нужную сторону. Например, если у гибрида нужно было улучшить вкусовые качества, в его крону прививались черенки с родительского организма, имеющего хорошие вкусовые качества, или гибридное растение прививали на подвой, в сторону которого нужно было изменить качества гибрида. И.В. Мичурин указывал на возможность управления доминированием определенных признаков при развитии гибрида. Для этого на ранних стадиях развития необходимо воздействие определенными внешними факторами. Например, если гибриды выращивать в открытом грунте, на бедных почвах повышается их морозостойкость.

Для ускорения и повышения эффективности селекционного процесса в настоящее время активно используют методы культуры тканей растений in vitro. У многих сельскохозяйственных растений эти методы применяют для создания новых сортов и гибридов с новыми улучшенными признаками. Применение биотехнологических методов для улучшения характеристик подсолнечника ограничивается слабой регенерационной способностью большинства генотипов в культуре тканей in vitro. Эффективность каллусогенеза и частота регенерации in vitro у подсолнечника зависит от типа использованного экспланта, генотипа растения-донора и состава питательных сред. Нами изучен в культуре соматических тканей in vitro на среде для инициации морфогенетический потенциал короткостебельных линий подсолнечника в зависимости от наличия агар-агара в питательной среде. В качестве эксплантов использовали незрелые зародыши семянок десяти короткостебельных линий подсолнечника. На этапе инициации каллусогенеза использовали два варианта среды Мурасиге-Скуга (жидкую без агар-агара и твердую с содержанием агар-агара 8 г/л) с добавлением гидролизата казеина 400 мг/л, фитогормонов 6-бензилоаминопурина 4 мг/л и нафтилуксусной кислоты 2 мг/л. Консистенция питательной среды и эффект генотипа оказали достоверное влияние на каллусогенез и регенерацию в культуре соматических тканей in vitro подсолнечника. На жидкой питательной среде преобладал каллусогенез, а на твердой среде образовывались почки и побеги. Достоверный положительный эффект на процессы каллусогенеза и регенерации на среде для инициации в культуре тканей in vitro установлен у короткостебельных линий, несущих гены dw 1, dw 3, dw 5, dw 6, dw 7 и dw 10.


1. Антонова Т. С., Боровков А. Ю., Зезуль Т. Г., Краснянский С. Ф. Соматический эмбриогенез в каллусе от незрелых зародышей подсолнечника // Сельскохозяйственная биология. – 1992. – № 1. – С. 36-42.

2. Биология, селекция и возделывание подсолнечника / О. И. Тихонов, Н. И. Бочкарев, А. Б. Дьяков и др. – М.: Агропромиздат, 1991. – 281 с.

5. Костина Е. Е., Лобачев Ю. В., Ткаченко О. В. Влияние генотипа на морфогенез в культуре соматических клеток и тканей подсолнечника in vitro // Вестник Саратовского государственного аграрного университета им. Н. И. Вавилова. – Саратов, 2013. – № 5. – С. 21-24.

6. Лобачев Ю. В., Костина Е. Е., Ткаченко О. В. Влияние консистенции питательной среды и генетических факторов на морфогенез подсолнечника in vitro // Международный журнал прикладных и фундаментальных исследований. – 2014. – № 3 (часть 2). – С. 60-61.

7. Нескородов Я. Б., Мишуткина Я. В., Гапоненко А. К., Скрябин К. Г. Метод регенерации in vitro побегов подсолнечника (Helianthus annus L.) из асептических семян, как эксплантов для генетической трансформации // Биотехнология. – 2007. – № 6. – С. 27-33.

9. Espinasse A., Lay C. Shoot regeneration of callus derived from globular to torpedo embryos from 59 sunflower genotypes // Crop Sci. – 1989. – V. 29. – P. 201-205.

10. Freyssinet M., Freyssinet G. Fertil plant regeneration from sunflower (Helianthus annus L.) immature embryos // Plant Sci. – 1988. – V. 56. – P. 177-181.

11. Ross J.J. Recent advances in the study of gibberellin mutants // Plant Growth Regulation. – 1994. – V. 15. – P. 193-206.

12. Witrzens B., Scowcroft W. R., Downes R. W., Larkin P. J. Tissue culture and plant regeneration from sunflower (Helianthus annus L.) and interspecific hybrids (H. tuberosus x H. annus) // Plant Cell Tissue Organ Cult. – 1988. – V. 13. – P. 61-76.

В настоящее время у растений методы культуры тканей in vitro применяются для ускорения и повышения эффективности селекционного процесса [1, 7].

Морфогенез клеток растений in vitro может происходить различными путями – от дифференцировки отдельных клеток до развития целого растения. Регенерация растений in vitro может осуществляться путем эмбриогенеза непосредственно из соматических клеток экспланта или каллуса, или путем формирования почек в процессе органогенеза [5, 6]. Регенерация растений из каллуса может осуществляться через органогенез [9, 12] или через соматический эмбриогенез [1, 3, 10].

Применение биотехнологических методов для улучшения характеристик подсолнечника ограничивается слабой регенерационной способностью большинства генотипов в культуре тканей in vitro [1, 7]. Многими авторами показано, что частота регенерации in vitro у подсолнечника варьирует в зависимости от типа использованного экспланта, генотипа растения-донора и состава питательных сред [1-3, 5-7, 9, 10, 12]. В то же время не достаточно информации о влиянии конкретных генетических систем или отдельных генов на этапы морфогенеза соматических клеток подсолнечника в культуре тканей in vitro. Гены короткостебельности оказывают существенное влияние на морфологические, физиологические и биохимические признаки растений, они связаны с балансом эндогенных фитогормонов [11] и, следовательно, могут детерминировать морфогенетические процессы клеток и тканей, в том числе в культуре in vitro.

Целью данного исследования является изучение влияния генотипа и консистенции питательной среды на процессы каллусогенеза и регенерации растений на инициальной питательной среде в культуре соматических тканей in vitro подсолнечника.

Материал и методы исследований

Объектами исследований являлись самофертильная высокорослая линия-реципиент ЮВ-28Б и десять экспериментальных короткостебельных линий подсолнечника, созданных в генофоне линии ЮВ-28Б методом беккроссов на основе использования разных dw-генов. Высота растений у разных короткостебельных линий снижена dw-генами на 35–50 % по сравнению со стандартной линией ЮВ-28Б [4].

На этапе инициации каллусогенеза использовали два варианта среды Мурасиге-Скуга (жидкую без агар-агара и твердую с содержанием агар-агара 8 г/л) с добавлением гидролизата казеина 400 мг/л, фитогормонов 6-бензилоаминопурина (6 БАП) 4 мг/л и нафтилуксусной кислоты (НУК) 2 мг/л. Экспланты, высаженные на питательные среды, культивировали в течение 4 недель в темноте при температуре 25 о C.

Полученные тканевые культуры для регенерации переносили на твердую питательную среду Мурасиге-Скуга с содержанием агар-агара 8 г/л с добавлением 6 БАП 0,5 мг/л, гидролизата казеина 500 мг/л и инозита 100 мг/л. Культивирование проводили на свету при температуре 25 о C. Регенерировавшие побеги пересаживали для корнеобразования на питательную среду Мурасиге-Скуга с добавлением индолилуксусной кислоты (ИУК) 0,2 мг/л, кинетина 0,5 мг/л, гидролизата казеина 500 мг/л и инозита 500 мг/л.

Эксперименты проводили в течение 2008–2010 гг., каждый вариант имел четырехкратную повторность. Полученные данные обрабатывали методом двухфакторного дисперсионного анализа с использованием пакета программ Agros 2.09 [8].

Результаты исследований и их обсуждение

Из тканей экспланта в процессе дедифференциации формировался каллус, к концу четвертой недели на нем выделялись плотные окрашенные зоны меристематической активности, в которых во множестве формировались эмбриоиды. Эти зоны, выделенные из морфогенных каллусов, после переноса на среду для регенерации дифференцировались в почки от 1 до 10 штук на одном каллусе. Другим вариантом морфогенеза являлась прямая регенерация почек и побегов с листьями непосредственно из тканей зародыша, содержащих меристематические клетки.

Часть сформировавшихся побегов на среде с добавлением ИУК 0,2 мг/л, кинетина 0,5 мг/л образовывали корни и после пересадки в почву укоренялись. Вторая часть почек имела аномалии развития: утолщение гипокотиля, отсутствие роста эпикотиля, витрификация побегов, раннее зацветание с образованием одной или нескольких корзинок. Такую особенность развития почек in vitro у подсолнечника отмечают многие авторы [1, 3, 5-7, 9, 12].

Анализ экспериментальных данных показал, что на жидкой среде клетки активно делились без дифференциации и формировалась масса каллусных клеток неокрашенных и активно пролиферирующих. На твердой среде преимущественно наблюдалась прямая регенерация побегов из клеток эксплантов. На раневых поверхностях некоторых эксплантов образовывался каллус плотный меньшего объема.

Анализ результатов экспериментов с помощью двухфакторного дисперсионного анализа позволил оценить влияние факторов А (консистенция питательной среды, 2 градации фактора) и В (генотип изучаемых линий подсолнечника, 11 градаций фактора).

Влияние генотипа и консистенции питательной среды на выход каллусов от общего количества эксплантов в культуре in vitro соматических клеток и тканей подсолнечника (2008–2010 гг.), %

Третья статья в серии — о селекции подсолнечника и долгосрочных трендах этой сферы. В XXI веке рынок сложился так, что для огромного количества российских аграриев подсолнечник стал если не главной, то как минимум второй по значимости культурой. Она остается одной из немногих рыночных позиций, цена на которую почти каждый год более-менее хорошая, а потому на эксперименты с подсолнечником пускаются даже те хозяйства, что находятся не в идеальной для него климатической зоне.

Российские селекционеры вернут позиции

Сегодня семена подсолнечника — в основном, иностранного происхождения: Франция, Германия, США. Свои позиции отечественное семеноводство упустило не столько потому, что качество продукции заведомо хуже, а потому, что наши семеноводы не так сильны в маркетинге и агрессивном вхождении на рынок, как опытные зарубежные игроки.

Законодательство изменится и облегчит всем жизнь

Существует сегодня и проблема патентного права. Отечественные научно-исследовательские центры волнует проблема совершенствования патентного права, в частности сбора роялти за пользование запатентованных сортов. Система отслеживания использования интеллектуальной собственности работает неэффективно, российским НИИ в среднем удается собирать около 50% всех роялти от реализованных семян.

Как следствие российским семеноводческим компаниям сложно конкурировать с зарубежными. К примеру, в 2014 году рынок семян подсолнечника, составляющий 220 млн долларов, более чем наполовину принадлежал иностранным компаниям (лидируют транснациональные Syngenta, Pioneer и Limagrain), и даже падение курса рубля не сильно изменило ситуацию: иностранные производители нашли инструменты, позволяющие нивелировать потери от ценового роста. Однако российские законодатели все пристальнее рассматривают такие проблемные и сложные отрасли, как патентное и авторское право, и в ближайшее время схема может быть пересмотрена — что развяжет руки российским семеноводам.

Гибридизация будет более интенсивной и смелой


В селекции подсолнечника применяют два вида гибридизации: внутривидовую и отдаленную. Большинство районированных сортов выведены первым путем — фактически, этот путь позволяет адаптировать семена подсолнечника по климатическому признаку. А вот отдаленная, или межвидовая гибридизация — метод, который используется для создания сортов с групповым иммунитетом к ржавчине, ложной мучнистой росе, склеротонии и другим болезням.

Однако у гибридов есть один недостаток: в долгосрочной перспективе они утрачивают способность давать потомство. Здесь на помощь приходит метод, который представляется селекционной науке эффективным, но пока не стал повсеместным в силу своей сложности: полиплоидия. Это явление кратного увеличения числа хромосом в ядрах клеток растений, спровоцированное искусственно. Полиплоидия имеет большое общебиологическое значение, так как повышает устойчивость организма к различным воздействиям, является важным источником наследственной изменчивости, способна закреплять гетерозис первого поколения, расширяет возможности подбора и дивергенции видов и т. п.

Получают искусственные полиплоиды при помощи химических веществ, которые разрушают веретено деления, в результате чего удвоившиеся хромосомы не могут разойтись, оставаясь в одном ядре. Одно из таких веществ — колхицин. Применение колхицина для получения искусственных полиплоидов является одним из примеров искусственного мутагенеза, применяемого в селекции растений. При этом важно понимать, что этот процесс не несет никакой потенциальной опасности для человека: на клетки млекопитающих, в отличие от растений, колхицин не воздействует.

Искусственный мутагенез — метод селекции, основанный на воздействии на организмы мутагенов, вызывающих различные мутации. Путем искусственного мутагенеза и последующего отбора мутантов были получены новые высокоурожайные сорта ячменя и пшеницы. Этими же методами удалось получить новые штаммы грибов, выделяющие в десятки раз больше антибиотиков, чем исходные формы. Сейчас в мире культивируют более 400 сортов сельскохозяйственных растений, созданных при помощи физического и химического мутагенеза, и это только начало большого процесса.

Урожай станет более предсказуемым и программируемым

Прямая селекция — новый метод?

Идея прямой селекции, запатентованной в США и Нидерландах, заключается в том, чтобы селекцию гибридов перевернуть с головы на ноги. Это гетерозисная селекция, получения гибридов первого поколения, построенная так: сначала берется определенное разнообразие, из этого разнообразия забираются некоторые материалы, потом из них создаются линии, а после того, как создали линии, начинается скрещивание и ищется нужная комбинация. Все остальные линии выбрасываются и остаются без внимания. Поэтому материал, который человечество использует для получения гибридов, — малая доля возможных комбинаций. Reverse breeding, обратная (или прямая) селекция, стоит на том, что из любого гибридного организма можно получить две родительские формы, которые при скрещивании будут возобновлять этот организм. Если наши фундаментальные знания и практические навыки позволят это сделать, мы сможем, выбрав популяции растений, которые нас наиболее удовлетворяют, получить родительские формы от наилучшей из них и воспроизводить ее в неограниченных масштабах.

В Европе было несколько грантов по этой теме, и эту работу даже сделали на модельном растении. Это возможность с любого гибридного гетерозиготного организма получить двух родителей. Пример — селекция растений, размножающихся вегетативно. Мы скрещиваем генотипы, а после того, как мы нашли то, что нам нужно, мы просто воспроизводим его в неограниченных масштабах.

Еще одно новшество последних лет — селекция подсолнечника с помощью технологии CRISPR-CAS. С научной точки зрения эта система представляет собой процесс редактирования генома конкретного растения. Так, при необходимости селекционеры могут в цепочке ДНК или навсегда удалить конкретный участок, или заменить его другим, либо добавить нужный ген, который, например, будет отвечать за толерантность растения к засухе. Эта технология находится на стыке традиционной селекции и генетической модификации, а потому воспринимается многими российскими специалистами в штыки — однако, как показывают первые зарубежные опыты, шансы этой методики стать повсеместной очень высоки: подкупает удивительная простота и скорость. Новый гибрид подсолнечника с помощью редактирования генома можно будет выводить за месяц!

Селекция (лат. selectio - выбирать) - наука и отрасль практической деятельности, направленная на создание новых сортов растений, пород животных и штаммов микроорганизмов, обладающих полезными для человека свойствами.

Этими полезными свойствами могут быть размер и форма плодов, урожайность, удойность у коров, устойчивость к факторам внешней среды (к засушливому климату, к морозу).

Селекция

Основы селекции

В основе селекции лежит способность генотипа живых организмов к изменениям, что происходит главным образом за счет комбинативной и мутационной изменчивости. В процессе селекции происходит искусственный отбор организмов с полезными для человека свойствами и их размножение.

В результате множества последовательных скрещиваний, в конце концов, селекционерам удается достичь желаемой цели: вывести гибридов с нужными признаками.

Мутационная изменчивость существует благодаря мутациям - случайным ненаправленным изменениям генотипа. Благодаря мутациям, к примеру, возник безалкалоидный сорт люпина. И.В. Мичуриным на яблоне сорта Антоновка Могилевская были обнаружены необычайно крупные плоды, ветвь с которым послужила для появления нового сорта - Антоновки шестистограммовой. Эти плоды - результат произошедшей в естественных условиях мутации соматических клеток.

Антоновка шестистограммовая

"Сколько ждать этой естественной мутации?" - спросите вы. Может один день, а может и 100, и 10000 лет - всем властвует случайность. На наш век может не выпасть удача, а мы такого допустить не можем! :)

Именно по этой причине в селекции растений часто используются искусственно вызванные мутации - авто- и аллополиплоидию.

Автополиплоидия

Автополиплоидия - кратное (4n,6n,8n) увеличение исходного набора хромосом, который характерен для особей вида.

Автополиплоидия возникает в результате обработки почек колхицином, который нарушает образование нитей веретена деления, и, соответственно, нарушает расхождение хромосом в мейозе, в результате чего набор хромосом в половых клетках (гаметах) оказывается удвоенным. Таким способом получают полиплоиды - сорта растений, обладающие повышенной урожайностью.

Существуют различные тетраплоидные сорта свеклы, мака, кукурузы и других сельскохозяйственных культур, которые отличаются большими размерами плодов.

Автополиплоидия

Аллополиплоидия

Аллополиплоидия (греч. állos — другой и polýploos — многократный) - соединение в клетках организма хромосомного набора от разных видов или родов, в результате которого образуется гибридная зигота.

Благодаря аллополиплоидии получают новые сорта растений. Наиболее известным примером является гибрид ржи и пшеницы - тритикале. Некоторые межвидовые гибриды табака обладают повышенной устойчивостью к возбудителям заболеваний мучнистой росы, табачной мозаики.

Тритикале

В рамках биотехнологии разработаны методы, с помощью которых стало возможным создание бактерий, синтезирующих полезные для человека белки, многие из которых используются как лекарства: аминокислоты, антибиотики, инсулин.

Антибиотики

Скрещивание особей в селекции

Каждое скрещивание как сдача новых карт: может повезет, а может и нет. Вполне возможно, что особь унаследует полезные признаки от родителей и сможет передать их своим потомкам, всегда есть и шанс того, что появятся новые полезные для человека признаки, равно как и шанс, что ничего полезного из проводимого скрещивания не выйдет.

    Близкородственное скрещивание (инбридинг - от англ. in — внутри + breeding — разведение)

Близкородственное скрещивание в течение нескольких поколений приводит к переходу генов в гомозиготное состояние, вследствие чего потомство ослабевает и становится более подвержено наследственным заболеваниям.

Замечу, что под инбридингом подразумевают близкородственное скрещивание животных. Для самоопыления у растений существует иной термин - инцухт.

В селекции инбридинг применяют для выведения чистых линий (гомозиготных особей - aa, AA, bb, BB), которые используются, например, для анализирующего скрещивания. Инбридинг использовался при выведении абсолютно всех пород животных, и в настоящее время активно используется в питомниках для выведения нужных пород животных (кошек, собак и т.д.)

Шотландские вислоухие

Аутбридинг заключается в скрещивании неродственных особей, которые могут принадлежать к одному сорту, породе, виду или роду. Аутбридинг ведет к явлению гетерозиса - получения гетерозисных форм, которые превосходят родительских особей по ряду признаков.

Гетерозис - явление увеличения жизнеспособности особей у гибридов, которые получены при скрещивании двух чистых линий. Такой эффект связан с переходом генов в гетерозиготное состояние, что повышает выживаемость организмов, плодовитость, и множество других полезных свойств.

Гетерозис

Применение отдаленной гибридизации заключается в скрещивании особей, принадлежащих к разным родам и видам. Такие особи обладают крайне полезными для человека свойствами, но часто бесплодны (стерильны).

Известным примером отдаленной гибридизации является мул - гибрид осла (самца) и лошади (самки). Отличаются большой выносливостью и работоспособностью, живут до 40 лет, обладают хорошим иммунитетом к заболеваниям, не требовательны в корме и уходе.

Обратный пример: гибрид ослицы (самки) и жеребца (самца) - лошак. Встречаются гораздо реже по сравнению с мулом, так как обладают меньшей выносливостью и работоспособностью. В большинстве случаев бесплодны.

Мул и лошак

Отбор в селекции

Отбор в селекции осуществляет человек с единственной целью: размножить особей с нужными и полезными признаками, свойствами. Очевидно, что такой отбор называется искусственным, в противовес естественному отбору, главный критерий которого - приспособленность.

Отбор организмов исключительно на основе внешних данных (фенотипа). Основным критерием для человека служит проявление признака: размер плодов, цвет лепестков, цвет листьев и т.д. Этот вид отбора характеризуется массовостью и быстротой.

В результате массового отбора формируется группа особей, которые обладают нужными и полезными для человека признаками. В дальнейшем они подвергаются размножению.

Массовый отбор

Выборочный отбор и сохранение особей с ценными для человека признаками. В ходе индивидуального отбора оценивается не только фенотип, но и генотип, вследствие чего данный вид отбора занимает большее время, но оказывается более эффективен.

Индивидуальный отбор требует оценки потомства от выбранной особи в ряду поколений. Иногда подобный отбор применяют у самоопыляемых растений: пшеницы, ячменя - с целью получения чистых линий. Как было сказано ранее, чистые линии характеризуются гомозиготностью и являются исходным материалом для селекции.

Индивидуальный отбор

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.

Читайте также: