Рассмотрите на рисунке схему дигибридного скрещивания растений гороха и определите генотип родителей

Добавил пользователь Skiper
Обновлено: 21.09.2024

Решение задачи по генетике дигибридное скрещивание у растения томата

Задача 1
При скрещивании двух сортов томата с красными шаровидными и желтыми грушевидными плодами в первом поколении все плоды шаровидные, красные. Определите генотипы родителей, гибридов первого поколения, соотношение фенотипов второго поколения.
Решение:
Так как при скрещивании гороха все особи потомства имеют признак одного из родителей, значит, гены красного цвета (А) и гены шаровидной формы плодов (В) являются доминантными по отношению к генам жёлтой окраски (а) и грушевидной формы плодов (b). генотипы родителей: красные шаровидные плоды – ААВВ, желтые грушевидные плоды – ааbb.
Для определения генотипов первого поколения, соотношение фенотипов второго поколения неободимо составить схемы скрещивания:

Схема первого скрещивания:

Наблюдается единообразие первого поколения, генотипы особей AaBb (1-й закон Менделя).

Схема второго скрещивания:

Соотношение фенотипов второго поколения: 9 – красные шаровидные; 3 – красные грушевидные; 3 - желтые шаровидные; 1 – желтые грушевидные.
Ответ:
1) генотипы родителей: красные шаровидные плоды – ААВВ, желтые грушевидные плоды – ааbb.
2) генотипы F1: красные шаровидные АаВb.
3) соотношение фенотипов F2:
9 – красные шаровидные;
3– красные грушевидные;
3 - желтые шаровидные;
1 – желтые грушевидные.

Решение задачи по генетике на моногибридное скрещивание у человека

Задача 2
Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите возможные генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а у другого они отсутствуют и он гетерозиготен по этому признаку. Какова вероятность рождения детей с этой аномалией?
Решение:
Анализ условия задачи показывает, что скрещиваемые особи анализируются по одному признаку – коренные зубы, который представлен двумя альтернативными проявлениями: наличие коренных зубов и отсутствие коренных зубов. Причем сказано, что отсутствие коренных зубов является доминантным признаком, а наличие коренных зубов – рецессивным. Эта задача – на , и для обозначения аллелей достаточно будет взять одну букву алфавита. Доминантный аллель обозначим прописной буквой А, рецессивный аллель – строчной буквой а.
А — отсутствие коренных зубов;
а — наличие коренных зубов.
Запишем генотипы родителей. Помним, что генотип организма включает в себя два аллеля изучаемого гена “А”. Отсутствие малых коренных зубов – доминантный признак, поэтому родитель,у которого отсутствуют малые коренные зубы и он гетерозиготен, значит его генотип - Аа. Наличие малых коренных зубов - рецессивный признак, поэтому родитель, у которого отсутствуют малые коренные зубы гомозиготен по рецессивному гену, значит генотип его - аа.
При скрещивании гетерозиготного организма с гомозиготным рецесивным образуется потомство двух типов и по генотипу, и по фенотипу. Анализ скрещивания подтверждает это утверждение.

Ответ:
1) генотипы и фенотипы Р: аа – с малыми коренными зубами, Аа – без малых коренных зубов;
2) генотипы и фенотипы потомства: Аа – без малых коренных зубов, аа – с малыми коренными зубами; вероятность рождения детей без малых коренных зубов – 50%.

Решение задачи по медицинской генетике на сцепление генов в Х-хромосоме

Задача 3
У человека ген карих глаз (А) доминирует над голубым цветом глаз, а ген цветовой слепоты рецессивен (дальтонизм – d) и сцеплен с Х-хромосомой. Кареглазая женщина с нормальным зрением, отец которой имел голубые глаза и страдал цветовой слепотой, выходит замуж за голубоглазого мужчину с нормальным зрением. Составьте схему решения задачи. Определите генотипы родителей и возможного потомства, вероятность рождения в этой семье детей-дальтоников с карими глазами и их пол.
Решение:

Так как женщина кареглазая, а её отец страдал цветовой слепотой и был голубоглазым, то она получила рецессивный ген голубоглазости и ген дальтонизма от отца. Следовательно, женщина гетерозиготна по гену окраски глаза и является носителем гена дальтонизма, так как получила одну Х-хромосому от отца-дальтоника, её генотип - АаX D X d . Так как мужчина голубоглазый с нормальным зрением, то его генотип будет гомозиготен по рецессивному гену а и Х-хромосома будет содержать доминантный ген нормального зрения, его генотип - ааX D Y.
Определим генотипы возможного потомства, вероятность рождения в этой семье детей-дальтоников с карими глазами и их пол, составив схему скрещивания:

Ответ:
Схема решения задачи включает: 1) генотип матери – AaX D X d (гаметы: AX D , aX D , AX d , aX D ), генотип отца – aaX D Y (гаметы: aX D , aY);
2) генотипы детей: девочки – AaX D X D , ааX D X D , AaX D X d , ааX D X d ; мальчики – AaX D Y, aaXDY, AaX d Y, aaX D Y;
3) вероятность рождения детей-дальтоников с карими глазами: 12,5% AaX d Y – мальчики.

Решение задачи по генетике на кроссинговер у растения гороха

Задача 4
При скрещивании растения гороха с гладкими семенами и усиками с растением с морщинистыми семенами без усиков все поколение было единообразно и имело гладкие семена и усики. При скрещивании другой пары растений с такими же фенотипами (гороха с гладкими семенами и усиками и гороха с морщинистыми семенами без усиков) в потомстве получили половину растений с гладкими семенами и усиками и половину растений с морщинистыми семенами без усиков. Составьте схему каждого скрещивания.
Определите генотипы родителей и потомства. Объясните полученные результаты. Как определяются доминантные признаки в данном случае? Какой закон генетики при этом проявляется?
Решение:
Эта задача – на дигибридное скрещивание, так как скрещиваемые организмы анализируют по двум парам альтернативных признаков. Первая пара альтернативных признаков: форма семени – гладкие семена и морщинистые семена; вторая пара альтернативных признаков: наличие усиков – отсутствие усиков. За эти признаки отвечают аллели двух разных генов. Поэтому для обозначения аллелей разных генов будем использовать две буквы алфавита: “А” и “В”. Гены расположены в аутосомах, поэтому будем обозначать их только с помощью этих букв, без использования символов Х- и Y – хромосом.
Так как при скрещивании растения гороха с гладкими семенами и усиками с растением с морщинистыми семенами без усиков все поколение было единообразно и имело гладкие семена и усики, то можно сделать вывод - признак гладкие семена гороха и признак отсутствия усиков - доминантные признаки.
А ген, определяющий гладкую форму гороха; а - ген, определяющий морщинистую форму гороха; В - ген, определяющий наличие усиков у гороха; b - ген, определяющий отсутствие усиков у гороха. Генотипы родителей: ААВВ, aabb.
Анализ скрещивания подтверждает эти рассуждения.

Схема первого скрещивания

Так как при 2-м скрещивании произошло расщепление по двум парам признаков в соотношении 1:1, то можно считать, что гены, определяющие гладкие семена и наличие усиков (А, В), локализованы в одной хромосоме и наследуются сцеплено, растение с гладкими семенами и усиками гетерозиготно, значит генотипы родителей второй пары растений имеют вид: АаВb; aabb.
Анализ скрещивания подтверждает эти рассуждения.

Схема второго скрещивания

Ответ:
1. Гены, определяющие гладкие семена и наличие усиков, являются доминантными, так как при 1-м скрещивании всё поколение растений было одинаковым и имело гладкие семена и усики. Генотипы родителей: гладкие семена и усики - AABB (аметы АВ), морщинистые семена и без усиков - aabb (аметы - ab). Генотип потомков - AaBb. Проявляется закон единообразия первого поколения при скрещивании этой пары растений
2. При скрещивании второй пары растений гены, определяющие гладкие семена и наличие усиков (А, В), локализованы в одной хромосоме и наследуются сцеплено, так как при 2-м скрещивании произошло расщепление по двум парам признаков в соотношении 1:1. Проявляется закон сцепленного наследования.

Решение задачи по генетикее на сцепление гена окраски шерсти у кошек

Задача 5
Гены окраски шерсти кошек расположены в Х-хромосоме. Чёрная окраска определяется геном Х B , рыжая - геном Х b, гетерозиготы Х B Х b имеют черепаховую окраску. От чёрной кошки и рыжего кота родились: один черепаховый и один чёрный котёнок. Составьте схему решения задачи. Определите ьгенотипы родителей и потомства, возможный пол котят.
Решение:
Интересное сочетание: гены черного и рыжего цвета не доминируют друг над другом, а в сочетании дают черепаховую окраску. Здесь наблюдается кодоминирование (взаимодействие генов). Возьмем: Х B – ген отвечающий за черный цвет, Х b – ген отвечающий за рыжий цвет; гены Х В и Х b равнозначны и аллельны (Х В = Х b ).
Так как скрещивались чёрная кошка и рыжий кот, то их гентипы будут иметь вид: кошка - Х B Х В (гаметы Х B ), кот - Х b Y (гаметы Х b, Y). При данном типе скрещивания возможно рождение чёрных и черепаховых котят в соотношении 1:1. Анализ скрещивания подтверждает это суждение.

Ответ:
1) генотипы родителей: кошка Х B Х В (гаметы Х B ), кот - Х b Y (гаметы Х b , Y);
2) генотипы котят: черепаховый - Х B Х b , Х B Х b Y;
3) пол котят: самка - черепаховая, самец - чёрный.
При решении задачи использовали закон чистоты гамет и сцепленное с полом наследование. Взаимодействие генов - кодоминирование. Вид скрещивания - моногибридное.

Решение задачи по генетике на кроссинговер у мух дрозофил

Задача 6
Скрестили дигетерозиготных самцов мух дрозофил с серым телом и нормальными крыльями (признаки доминантные) с самками с чёрным телом и укороченными крыльями (рецессивные признаки). Составьте схему решения задачи. Определите генотипы родителей, а также возможные генотипы и фенотипы потмства F1, если доминантные и рецессивные гены данных признаков попарно сцеплены, а кроссинговер при образовании половых клеток не происходит. Объясните полученные результаты.
Решение:
Генотип дигетерозиготного самца: AaBb, генотип самки гомозиготной по рецессивным признакам имеет вид: aabb. Так как гены сцеплены, то самец даёт два типа гамет: АВ, аb, а самка - один тип гамет: ab, поэтому у потомства проявляется только два фенотипа в соотношении 1:1.
Анализ скрещивания подтверждает эти рассуждения.

Ответ:
1) генотипы родителей: самка aabb (аметы: ab), самец АаBb (гаметы: AB, ab);
2) генотипы потомства: 1АаВb серое тело, нормальные крылья; 1 ааbb чёрное тело, укороченные крылья;
3) так как гены сцеплены, то самец даёт два типа гамет: АВ, аb, а самка - один тип гамет: ab, поэтому у потомства проявляется только два фенотипа в соотношении 1:1. Проявляется закон сцеплённого наследования.

Решение задачи по генетике на сцеплённый с полом летальный ген у кур

Задача 7
У кур встречается сцеплённый с полом летальный ген (а), вызывающий гибель эмбрионов, гетерозиготы по этому признаку жизнеспособны.. Скрестили нормальную курицу с гетерозиготным петухом (уптиц гетерогаметный пол - женский). Составьте схему решения задачи, определите генотипы родителей, пол, генотип возможного потомства и вероятность гибели эмбрионов.
Решение:
По условию задачи:
Х А - развитие нормального эмбриона;
Х a - гибель эмбриона;
Х А Х a - жизнеспособные особи.
Определим генотипы и фенотипы потомства

Ответ:
1) генотипы родителей: Х А Y (гаметы Х А , Y), Х А Х А (гаметы Х А , Х А );
2) генотипы возможного потомства: Х А Y, Х А Х А , Х А Х a , Х a Y;
3) 25% - Х a Y нежизнеспособные.

Решение задачи по генетике на независимое наследование признаков при дигибридном скрещивании

Задача 8
При скрещивании растения с длинными полосатыми плодами с растением, имеющим круглые зелёные плоды, в потомстве получили растения с длинными зелёными и круглыми зелёными плодами. При скрещивании такого же арбуза (с длинными полосатыми плодами) с растением, имеющим круглые полосатые плоды, всё потомство имело круглые полосатые плоды. Определите доминантные и рецессивные признаки, генотипы всех родительских растений арбуза.
Решение:
А - ген, отвечающий за формирование круглого плода
a - ген, отвечающий за формирование длинного плода
В - ген, отвечающий за формирование зелёной окраски плода
b - ген, отвечающий за формирование полосатого плода
Так как при скрещивании растения с длинными полосатыми плодами с растением, имеющим круглые зелёные плоды, в потомстве F1 получили растения с длинными зелёными и круглыми зелёными плодами, то можно сделать вывод, что доминантными признаками являются круглые зелёные плоды, а рецессивными - длинные полосатые. Генотип растения с длинными полосатыми плодами - ааbb, а генотип растения с круглыми зхелёными плодами - АаВВ, потому что в потомстве все особи с зелёными плодами, и по 1/2 с круглыми и длинными плодами, значит, данное растение является гетерозиготй по доминантному признаку формы плода и гомозиготой по доминантному признаку окраски плода. Генотип потомства F1: AaBb, aaBb. Учитывая, что при скрещивании родительского арбуза с длинными полосатыми плодами (дигомозигота по рецессивным признакам) с растением, имеющим круглые полосатые плоды, всё потомство F2 имело круглые полосатые плоды, генотип родительского растения с зелёными полосатыми плодами, взятого для второго скрещивания, имеет вид: ААbb. Генотип потомства F2 - Ааbb.
Анализы проведённых скрещиваний подтверждают наши предположения.

Схема первого скрещивания

Схема второго скрещивания

Ответ:
1) доминантные признаки - плоды круглые, зелёные, рецессивные признаки - плоды длинные, полосатые;
2) генотипы родителей F1: aabb (длинные полосатые) и АаВВ (круглые зелёные);
3) генотипы родителей F2: ааbb (длинные полосатые) и ААbb (круглые полосатые).

Задача 9
Растение дурман с пурпурными цветками (А) и гладкими коробочками (b) скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и гладкими коробочками, с белыми цветками и колючими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.
Решение:
А ген пурпурной окраски цветка;
a - ген белой окраски цветка;
В - ген, формирующий колючую коробочку;
b - ген, формирующий гладкую коробочку.
Эта задача на дигибридное скрещивание (независимое наследование признаков при дигибридном скрещивании), так как растения анализируются по двум признакам: окраске цветка (пурпурная и белая) и форме коробочки (гладкая и колючая). Эти признаки обусловлены двумя разными генами. Поэтому для обозначения генов возьмем две буквы алфавита: “А” и “В”. Гены расположены в аутосомах, поэтому будем обозначать их только с помощью этих букв, без использования символов Х- и Y- хромосом. Гены, отвечающие за анализируемые признаки, не сцеплены друг с другом, поэтому будем использовать генную запись скрещивания.
Пурпурная окраска доминантный признак (А), а появившаяся в потомстве белая окраска - рецессивный признак (а). Каждый из родителей имеет пурпурную окраску цветка, значит, оба они несут доминантный ген А. Поскольку у них есть потомство с генотипом аа, то каждый из них должен нести также рецессивный ген а. Следовательно, генотип обоих родительских растений по гену окраски цветка – Аа. Признак колючая коробочка является доминантным по отношению к признаку гладкая коробочка, а так как при скрещивании растения с колючей коробочкой и растения с гладкой коробочкой появилось потомство и с колючей коробочкой , и с гладкой коробочкой, то генотип родителя с доминантным признаком по форме коробочки будет гетерозиготен (Bb), а по рецессивному - (bb). Тогда генотипы родителей: Aabb, aaBb.
Теперь определим генотипы потомства, проведя анализ скрещивания родительских растений:

Ответ:
1) генотипы родителей: Aabb (гаметы Ab, ab) * АаВb (гаметы АВ, Ab, aB, ab);
2) генотипы и соотношение фенотипов:
3/8 пурпурные колючие (AABb и AaBb);
3/8 пурпурные гладкие (ААbb и Aabb);
1/8 белые колючие (ааВb);
1/8 белые гладкие (ааbb);
3) независимое наследование признаков при дигибридном скрещивании.

Решение задач по генетике на аутосомно-доминантные признаки

Задача 10
Известно, что хорея Гентингтона (А) - заболевание, проявляющееся после 35-40 лет и сопровождающееся прогрессирующим нарушением функций головного мозга, и положительный резус-фактор (В) наследуются как несцеплённые аутосомно-доминантные признаки. Отец является дигетерозиготой по этим генам, а мать имеет отрицательный резус-фактор и здорова. Составьте схему решения задачи и определите генотипы родителей, возможного потомства и вероятность рождения здоровых детей с положительным резус-фактором.
Решение:
А ген болезни Гентингтона;
a - ген нормального развития мозга;
В - ген положительного резус-фактора;
b - ген отрицательного резус-фактораю
Эта задача на дигибридное скрещивание (несцеплённые аутосомно-доминантные наследование признаков при дигидридном скрещивании). По условию задачи отец дигетерозигот, значит его генотип - АаВb. Мать фенотипически рецессивна по обоим признакам, значит её генотип - ааbb.
Теперь определим генотипы потомства, проведя анализ скрещивания родителей:

Ответ:
1) генотипы родителей: отец - AaВb (гаметы АВ Ab, аВ, ab), мать ааbb (гаметы ab);
2) генотипы потомства: AaBb, Aabb, aaBb, aabb;
3)25% потомства с генотипом aaBb - резус-положительные и здоровы.

Задача11
У родителей со свободной мочкой уха и треугольной ямкой на подбородке родился ребёнок со сросшейся мочкой уха и гладким подбородком. Определите генотипы родителей, первого ребёнка, генотипы и фенотипы других возможных потомков. составьте схему решения задачи. Признаки наследуются независимо.
Решение:
Дано:
Каждый из родителей имеет свободную мочку уха и треугольную ямку и у них родился ребёнок со сросшейся мочкой уха и гладким подбородком, значит, свободная мочка уха и треугольный подбородок доминантные признаки, а сросшаяся мочка и гладкий подбородок рецессивные признаки. Из этих рассуждений делаем вывод: родители дигетерозиготны, а ребёнок дигомозиготный по рецессивным признакам. составим таблицу признаков:

Следовательно, генотипы родителей: мать АаВb (гаметы АВ, Аb, Ab, ab), отец АаВb (гаметы АВ, Аb, Ab, ab), генотип первого ребёнка: aabb - сросшаяся мочка, гладкий подбородок.
Анализ скрещивания подтверждает это суждение.

Фенотипы и генотипы потомства:
свободная мочка, треугольная ямка, А_В_
свободная мочка, гладкий подбородок, А_bb
сросшаяся мочка, треугольная ямка, ааВ_
сросшаяся мочка, гладкий подбородок, aabb.
Ответ:
1) генотипы родителей: мать АаВb (гаметы АВ, Аb, Ab, ab), отец АаВb (гаметы АВ, Аb, Ab, ab);
2) генотип первого ребёнка: aabb - сросшаяся мочка, гладкий подбородок;
3) генотипы и фенотипы возможных потомков:
свободная мочка, треугольная ямка, А_В_;
свободная мочка, гладкий подбородок, А_bb;
свободная мочка, треугольная ямка, А_В_;
сросшаяся мочка, гладкий подбородок, aabb.

Чешский исследователь Грегор Мендель (1822–1884) считается основателем генетики, так как он первым, еще до того как оформилась эта наука, сформулировал основные законы наследования. Многие ученые до Менделя, в том числе выдающийся немецкий гибридизатор XVIII в. И. Кельрейтер, отмечали, что при скрещивании растений, принадлежащих к различным разновидностям, в гибридном потомстве наблюдается большая изменчивость. Однако объяснить сложное расщепление и, тем более, свести его к точным формулам никто не сумел из-за отсутствия научного метода гибридологического анализа.

Именно благодаря разработке гибридологического метода Менделю удалось избежать трудностей, запутавших более ранних исследователей. О результатах своей работы Г. Мендель доложил в 1865 г. на заседании Общества естествоиспытателей в г. Брюнна. Сама работа под названием “Опыты над растительными гибридами” была позже напечатана в “Трудах” этого общества, но не получила надлежащей оценки современников и оставалась забытой в течение 35 лет.

Будучи монахом, свои классические опыты по скрещиванию различных сортов гороха Г. Мендель проводил в монастырском саду в г. Брюнна. Он отобрал 22 сорта гороха, которые имели четкие альтернативные различия по семи признакам: семена желтые и зеленые, гладкие и морщинистые, цветки красные и белые, растения высокие и низкие и т.д. Важным условием гибридологического метода было обязательное использование в качестве родителей чистых, т.е. не расщепляющихся по изучаемым признакам форм.

Большую роль в успехе исследований Менделя сыграл удачный выбор объекта. Горох посевной — самоопылитель. Для получения гибридов первого поколения Мендель кастрировал цветки материнского растения (удалял пыльники) и производил искусственное опыление пестиков пыльцой мужского родителя. При получении гибридов второго поколения эта процедура уже была не нужна: он просто оставлял гибриды F1 самоопыляться, что делало эксперимент менее трудоемким. Растения гороха размножались исключительно половым способом, так что ни какие отклонения не могли исказить результаты опыта. И, наконец, у гороха Мендель обнаружил достаточное для анализа количество пар ярко контрастирующих (альтернативных) и легко различимых пар признаков.

Мендель начал анализ с самого простого типа скрещивания — моногибридного, при котором у родительских особей имеются различия по одной паре признаков. Первой закономерностью наследования, обнаруженной Менделем, было то, что все гибриды первого поколения имели одинаковый фенотип и наследовали признак одного из родителей. Этот признак Мендель назвал доминантным. Альтернативный ему признак другого родителя, не проявившийся у гибридов, был назван рецессивным. Открытая закономерность получила названия I закона Менделя, или закона единообразия гибридов I-го поколения. В ходе анализа второго поколения была установлена вторая закономерность: расщепление гибридов на два фенотипических класса (с доминантным признаком и с рецессивным признаком) в определенных числовых отношениях. Путем подсчета количества особей в каждом фенотипическом классе Мендель установил, что расщепление в моногибридном скрещивании соответствует формуле 3 : 1 (на три растения с доминантным признаком, одно — с рецессивным). Эта закономерность получила название II закона Менделя, или закона расщепления. Открытые закономерности проявлялись при анализе всех семи пар признаков, на основании чего автор пришел к выводу об их универсальности. При самоопылении гибридов F2 Мендель получил следующие результаты. Растения с белыми цветами давали потомство только с белыми цветками. Растения с красными цветками вели себя по-разному. Лишь третья часть их давала единообразное потомство с красными цветами. Потомство остальных расщеплялось в отношении красной и белой окраски в соотношении 3 : 1.

Ниже приведена схема наследования окраски цветков гороха, иллюстрирующая I и II законы Менделя.

Схема наследования красной и белой окраски цветков у гороха

Схема наследования красной и белой окраски цветков у гороха

При попытке объяснить цитологические основы открытых закономерностей Мендель сформулировал представление о дискретных наследственных задатках, содержащихся в гаметах и определяющих развитие парных альтернативных признаков. Каждая гамета несет по одному наследственному задатку, т.е. является “чистой”. После оплодотворения зигота получает два наследственных задатка (один — от матери, другой — от отца), которые не смешиваются и в дальнейшем при образовании гибридом гамет также попадают в разные гаметы. Эта гипотеза Менделя получила название правила “чистоты гамет”. От комбинации наследственных задатков в зиготе зависит то, каким признаком будет обладать гибрид. Задаток, определяющий развитие доминантного признака, Мендель обозначал заглавной буквой (А), а рецессивный — прописной (а). Сочетание АА и Аа в зиготе определяет развитие у гибрида доминантного признака. Рецессивный признак проявляется только при комбинации аа.

В 1902 г. В. Бетсон предложил обозначить явление парности признаков термином “аллеломорфизм”, а сами признаки, соответственно, “аллеломорфными”. По его же предложению, организмы, содержащие одинаковые наследственные задатки, стали называть гомозиготными, а содержащие разные задатки — гетерозиготными. Позже, термин “аллеломорфизм” был заменен более кратким термином “аллелизм” (Иогансен, 1926), а наследственные задатки (гены), отвечающие за развитие альтернативных признаков были названы “аллельными”.

Гибридологический анализ предусматривает реципрокное скрещивание родительских форм, т.е. использования одной и той же особи сначала в качестве материнского родителя (прямое скрещивание), а затем в качестве отцовского (обратное скрещивание). Если в обоих скрещиваниях получаются одинаковые результаты, соответствующие законам Менделя, то это говорит о том, что анализируемый признак определяется аутосомным геном. В противном случае имеет место сцепление признака с полом, обусловленное локализацией гена в половой хромосоме.

Схема реципрокного моногибридного скрещивания

Схема реципрокного моногибридного скрещивания


Буквенные обозначения: Р — родительская особь, F — гибридная особь, ♀ и ♂ — женская или мужская особь (или гамета),
заглавная буква (А) — доминантный наследственный задаток (ген), строчная буква (а) — рецессивный ген.

Среди гибридов второго поколения с желтой окраской семян есть как доминантные гомозиготы, так и гетерозиготы. Для определения конкретного генотипа гибрида Мендель предложил проводить скрещивание гибрида с гомозиготной рецессивной формой. Оно получило название анализирующего. При скрещивании гетерозиготы (Аа) с линией анализатором (аа) наблюдается расщепление и по генотипу, и по фенотипу в соотношении 1 : 1.

Схема анализирующего скрещивания

Если гомозиготной рецессивной формой является один из родителей, то анализирующее скрещивание одновременно становится беккроссом — возвратным скрещиванием гибрида с родительской формой. Потомство от такого скрещивания обозначают Fb.

Закономерности, обнаруженные Менделем при анализе моногибридного скрещивания, проявлялись также и в дигибридном скрещивании, в котором родители различались по двум парам альтернативных признаков (например, желтая и зеленая окраска семян, гладкая и морщинистая форма). Однако количество фенотипических классов в F2 возрастало вдвое, а формула расщепления по фенотипу была 9 : 3 : 3 : 1 (на 9 особей с двумя доминантными признаками, по три особи — с одним доминантным и одним рецессивным признаком и одна особь с двумя рецессивными признаками).

Для облегчения анализа расщепления в F2 английский генетик Р. Пеннет предложил его графическое изображение в виде решетки, которую стали называть по его имени (решеткой Пеннета). Слева по вертикали в ней располагаются женские гаметы гибрида F1, справа — мужские. Во внутренние квадраты решетки вписываются сочетания генов, возникающие при их слиянии, и соответствующий каждому генотипу фенотип. Если гаметы располагать в решетке в той последовательности, какая представлена на схеме, то в решетке можно заметить порядок в расположении генотипов: по одной диагонали располагаются все гомозиготы, по другой — гетерозиготы по двум генам (дигетерозиготы). Все остальные клетки заняты моногетерозиготами (гетерозиготами по одному гену).

Расщепление в F2 можно представить, используя фенотипические радикалы, т.е. указывая не весь генотип, а только гены, которые определяют фенотип. Эта запись выглядит следующим образом:

Расщепление в F2

Черточки в радикалах означают, что вторые аллельные гены могут быть как доминантными, так и рецессивными, фенотип при этом будет одинаковым.

Схема дигибридного скрещивания
(решетка Пеннета)

Схема дигибридного скрещивания (решетка Пеннета)

Общее количество генотипов F2 в решетке Пеннета — 16, но разных — 9, так как некоторые генотипы повторяются. Частота разных генотипов описывается правилом:

В F2 дигибридного скрещивания все гомозиготы встречаются один раз, моногетерозиготы — два раза и дигетерозиготы — четыре раза. В решетке Пеннета представлены 4 гомозиготы, 8 моногетерозигот и 4 дигетерозиготы.

Расщепление по генотипу соответствует следующей формуле:

1ААВВ : 2ААВb : 1ААbb : 2АаВВ : 4АаВb : 2Ааbb : 1ааВВ : 2ааВb : 1ааbb.

Сокращенно - 1 : 2 : 1 : 2 : 4 : 2 : 1 : 2 : 1.

Среди гибридов F2 только два генотипа повторяют генотипы родительских форм: ААВВ и ааbb; в остальных произошла перекомбинация родительских генов. Она привела к появлению двух новых фенотипических классов: желтых морщинистых семян и зеленых гладких.

Проведя анализ результатов дигибридного скрещивания по каждой паре признаков отдельно, Мендель установил третью закономерность: независимый характер наследования разных пар признаков (III закон Менделя). Независимость выражается в том, что расщепление по каждой паре признаков соответствует формуле моногибридного скрещивания 3 : 1. Таким образом, дигибридное скрещивание можно представить как два одновременно идущих моногибридных.

Как было установлено позже, независимый тип наследования обусловлен локализацией генов в разных парах гомологичных хромосом. Цитологическую основу менделевского расщепления составляет поведение хромосом в процессе клеточного деления и последующее слияние гамет во время оплодотворения. В профазе I редукционного деления мейоза гомологичные хромосомы коньюгируют, а затем в анафазе I расходятся к разным полюсам, благодаря чему аллельные гены не могут попасть в одну гамету. Негомологичные хромосомы при расхождении свободно комбинируются друг с другом и отходят к полюсам в разных сочетаниях. Этим обусловлена генетическая неоднородность половых клеток, а после их слияния в процессе оплодотворения — генетическая неоднородность зигот, и как следствие, генотипическое и фенотипическое разнообразие потомства.

Независимое наследование разных пар признаков позволяет легко рассчитывать формулы расщепления в ди- и полигибридных скрещиваниях, так как в их основе лежат простые формулы моногибридного скрещивания. При расчете используется закон вероятности (вероятность встречаемости двух и более явлений одновременно равна произведению их вероятностей). Дигибридное скрещивание можно разложить на два, тригибридное — на три независимых моногибридных скрещивания, в каждом из которых вероятность проявления двух разных признаков в F2 равна 3 : 1. Следовательно, формула расщепления по фенотипу в F2 дигибридного скрещивания будет:

(3 : 1) 2 = 9 : 3 : 3 : 1,

тригибридного (3 : 1) 3 = 27 : 9 : 9 : 9 : 3 : 3 : 3 : 1 и т.д.

Число фенотипов в F2 полигибридного скрещивания равно 2 n , где n — число пар признаков, по которым различаются родительские особи.

Формулы расчета других характеристик гибридов представлены в таблице 1.

Таблица 1. Количественные закономерности расщепленияв гибридном потомстве
при различных типах скрещиваний

Расщепление по фенотипу в F2

Проявление закономерностей наследования, открытых Менделем, возможно только при определенных условиях (не зависящих от экспериментатора). Ими являются:

  1. Равновероятное образование гибридом всех сортов гамет.
  2. Всевозможное сочетание гамет в процессе оплодотворения.
  3. Одинаковая жизнеспособность всех сортов зигот.

Если эти условия не реализуются, то характер расщепления в гибридном потомстве изменяется.

Первое условие может быть нарушено по причине нежизнеспособности того или иного типа гамет, возможной вследствие различных причин, например, негативного действия другого гена, проявляющегося на гаметическом уровне.

Второе условие нарушается в случае селективного оплодотворения, при котором наблюдается предпочтительное слияние определенных сортов гамет. При этом гамета с одним и тем же геном может вести себя в процессе оплодотворения по-разному, в зависимости от того является ли она женской или мужской.

Третье условие обычно нарушается, если доминантный ген имеет в гомозиготном состоянии летальный эффект. В этом случае в F2 моногибридного скрещивания в результате гибели доминантных гомозигот АА вместо расщепления 3 : 1 наблюдается расщепление 2 : 1. Примером таких генов являются: ген платиновой окраски меха у лисиц, ген серой окраски шерсти у овец породы ширази. (Подробнее в следующей лекции.)

Причиной отклонения от менделевских формул расщепления может также стать неполное проявление признака. Степень проявления действия генов в фенотипе обозначается термином экспрессивность. У некоторых генов она является нестабильной и сильно зависит от внешних условий. Примером может служить рецессивный ген черной окраски тела у дрозофилы (мутация ebony), экспрессивность которого зависит от температуры, вследствие чего особи гетерозиготные по этому гену могут иметь темную окраску.

Открытие Менделем законов наследования более чем на три десятилетия опередило развитие генетики. Опубликованный автором труд “Опыт работы с растительными гибридами” не был понят и по достоинству оценен современниками, в том числе Ч. Дарвиным. Основная причина этого заключается в том, что к моменту публикации работы Менделя еще не были открыты хромосомы и не был описан процесс деления клеток, составляющий, как было сказано выше, цитологическую основу менделевских закономерностей. Кроме того, сам Мендель усомнился в универсальности открытых им закономерностей, когда по совету К. Негели стал проверять полученные результаты на другом объекте — ястребинке. Не зная о том, что ястребинка размножается партеногенетически и, следовательно, у нее нельзя получить гибридов, Мендель был совершенно обескуражен итогами опытов, никак не вписывавшимися в рамки его законов. Под влиянием неудачи он забросил свои исследования.

Признание пришло к Менделю в самом начале ХХ в., когда в 1900 г. три исследователя — Г. де Фриз, К. Корренс и Э. Чермак — независимо друг от друга опубликовали результаты своих исследований, воспроизводящих эксперименты Менделя, и подтвердили правильность его выводов. Поскольку к этому времени был полностью описан митоз, почти полностью мейоз (его полное описание завершилось в 1905 г.), а также процесс оплодотворения, ученые смогли связать поведение менделевских наследственных факторов с поведением хромосом в процессе клеточного деления. Переоткрытие законов Менделя и стало отправной точкой для развития генетики.

Первое десятилетие ХХ в. стало периодом триумфального шествия менделизма. Закономерности, открытые Менделем, были подтверждены при изучении различных признаков как на растительных, так и на животных объектах. Возникло представление об универсальности законов Менделя. Вместе с тем стали накапливаться факты, которые не укладывались в рамки этих законов. Но именно гибридологический метод позволил выяснить природу этих отклонений и подтвердить правильность выводов Менделя.

Все пары признаков, которые были использованы Менделем, наследовались по типу полного доминирования. В этом случае рецессивный ген в гетерозиготе не действует, и фенотип гетерозиготы определяется исключительно доминантным геном. Однако большое число признаков у растений и животных наследуются по типу неполного доминирования. В этом случае гибрид F1 полностью не воспроизводит признак того или другого родителя. Выражение признака является промежуточным, с большим или меньшим уклонением в ту или другую сторону.

Примером неполного доминирования может быть промежуточная розовая окраска цветков у гибридов ночной красавицы, полученных при скрещивании растений с доминантной красной и рецессивной белой окраской (см. схему).

Схема неполного доминирования при наследовании окраски цветков у ночной красавицы

Схема неполного доминирования при наследовании окраски цветков

Как видно из схемы, в скрещивании действует закон единообразия гибридов первого поколения. Все гибриды имеют одинаковую окраску — розовую — в результате неполного доминирования гена А. Во втором поколении разные генотипы имеют ту же частоту, что и в опыте Менделя, а изменяется только формула расщепления по фенотипу. Она совпадает с формулой расщепления по генотипу — 1 : 2 : 1, так как каждому генотипу соответствует свой признак. Это обстоятельство облегчает проведение анализа, так как отпадает надобность в анализирующем скрещивании.

Существует еще один тип поведения аллельных генов в гетерозиготе. Он называется кодоминированием и описан при изучении наследования групп крови у человека и ряда домашних животных. В этом случае у гибрида, в генотипе которого присутствуют оба аллельных гена, в равной мере проявляются оба альтернативных признака. Кодоминирование наблюдается при наследовании групп крови системы А, В, 0 у человека. У людей с группой АВ (IV группа) в крови присутствуют два разных антигена, синтез которых контролируется двумя аллельными генами.

Похожие материалы по теме "Законы Менделя":

Перейти к чтению других тем книги "Генетика и селекция. Теория. Задания. Ответы":

Наследственность — способность живых организмов получать характерные черты от старших поколений, а изменчивость — приобретать новые. Наука, изучающая законы наследования и появления новых признаков у живых организмов, называется генетикой. Ее основы были заложены Грегором Менделем, занимавшимся скрещиванием разных форм гороха. Исследования по моногибридному и дигибридному скрещиванию, проведенные чешским ученым, позволили сформулировать генетические законы, названные его именем.

Основные понятия наследственности и изменчивости

Основные понятия

Схема дигибридного скрещивания

Для понимания законов наследования необходимо ознакомиться с понятиями, которой пользуется генетика. Генотип — совокупность генов, присущих одному организму. Они получаются от родителей в индивидуальном порядке и могут влиять друг на друга. Фенотип — анатомические, физиологические и биохимические особенности, сформировавшиеся у организма во время его развития и определенные генотипом.

Гены — это сегменты дезоксирибонуклеиновой кислоты (ДНК), состоящие из белков или полипептидов, в которых зашифрован код того или иного признака. Они содержатся в хромосомах — внутриклеточных структурах всех органов и тканей живого организма. Цепочки генов в хромосомах могут насчитывать тысячи фрагментов. Каждый вид имеет свой набор хромосом, т. е. определенное их количество. Родительские хромосомы, похожие по строению и размеру, называются гомологичными, а их участки, кодирующие одни и те же белки, — аллельными генами.

Клетки, участвующие в оплодотворении (мужские и женские), называются гаметами, им присуща гаплоидность — половинный набор хромосом. Если в процессе участвуют клетки с разным генотипом, то он называется скрещиванием. В зависимости от способа оплодотворения бывает естественным и искусственным. Особи, полученные от скрещивания, называются гибридами. Зигота — оплодотворенная клетка, в которой два гаплоидных набора родительских хромосом сливаются в один диплоидный.

Во время деления зиготы участки аллелей генов могут взаимозаменяться, в результате у потомства происходит замещение по генотипу или по фенотипу. Полученные генотипы разделяются на гомозиготные и гетерозиготные организмы. У первых гомологичные хромосомы содержат аллели генов с одинаковым состоянием одного и того же признака (только доминантным или только рецессивным), по которому могут образоваться гаметы только одного сорта. При скрещивании таких особей по этой особенности расщепления не происходит.

Принципы наследования альтернативных признаков в законах Грегора Менделя

Гетерозиготные организмы имеют в гомологичных хромосомах аллели, кодирующие разные состояния признака (и доминантные, и рецессивные). Они образуют гаметы двух сортов, а при их скрещивании происходит расщепление примет. Доминантный аллель гена позволяет развиться признаку и в гомо-, и в гетерозиготном состоянии, рецессивный — только в гомозиготном.

Гибридологический анализ

Данный метод генетики основан на скрещивании особей одного вида с альтернативными (контрастными) признаками (АП) и отслеживании их дальнейшего развития у следующих поколений потомства. При этом должны соблюдаться условия:

  • изучаются только исследуемые признаки, остальные не учитываются;
  • целенаправленно подбираются родители с нужными приметами;
  • потомство каждой особи выращивается отдельно от других;
  • ведется количественный учет гибридов, получивших изучаемые признаки;
  • в ряду поколений оценивается потомство, полученное от каждого родителя.

При изучении моно- и дигибридного скрещивания в биологии используются следующие общепринятые символы:

Схема дигибридного скрещивания

  • Родительский организм обозначается латинской буквой P.
  • Женский пол — значком ♀ или буквой E.
  • Мужской пол — значком ♂ или буквой G.
  • Скрещивание — знаком умножения.
  • Гибридное потомство — латинской буквой F и отмечается цифровым индексом, означающим порядок поколения (F1, F2 и т. д. ).
  • Заглавной буквой записывается доминантный (A, B), строчной — рецессивный ген (a, b).
  • Двумя заглавными — гомозигота по доминантному (AA, BB), двумя строчными — гомозигота по рецессивному признаку (aa, bb).
  • Заглавной и строчной буквами (Аа, Bb) обозначается гетерозигота.

К альтернативным относятся такие признаки, которые радикально отличаются у какого-либо вида. Например, контрастные признаки у гороха: по цвету цветков — красные и белые; по виду кожуры — гладкие и сморщенные; по высоте растения — высокие и низкие.

Законы Менделя

Для определения закономерностей, по которым в потомстве происходит распределение наследственных АП, Г. Мендель анализировал результаты, полученные при скрещивании разных сортов гороха и их гибридов с 1856 по 1864 год.

Гибридологический анализ

Растение, выбранное им, было удобно по ряду качеств:

  • хорошо и быстро выращивается;
  • дает многочисленное потомство;
  • имеет много АП;
  • самоопыление, что дает большое число чистых линий, которые передаются из поколения в поколение.

Успеху ученого способствовало то, что он отслеживал наследование только определенного числа признаков. В зависимости от этого скрещивание бывает:

  • моногибридным;
  • дигибридным;
  • полигибридным.

Моногибриным является такое скрещивание, при котором наследственные закономерности выявляются только по одной паре АП, развитие которых определяется единственной парой аллельных генов.

Моногибридный метод

Законы Менделя

При моногибридном скрещивании все особи F1 наследуют одинаковые особенности, полученные только от одного из родителей. У гороха это оказались красные цветы, белые полностью отсутствовали. Проявляющийся признак Г. Мендель назвал преобладающим или доминантным, а отсутствующий — отступающим или рецессивным.

При формировании гаметы в нее попадает только один ген. Половина гамет несет доминантную особенность, другая половина — рецессивную. При этом любое сочетание гамет дает гибридам одинаковые генотипические и фенотипические черты. Таким образом происходит наследование у гибридов первого поколения. Эту генетическую закономерность назвали законом доминирования или законом единообразия гибридов первого поколения (первый закон Менделя).

Неполное доминирование

Моногибридный метод

Если в поколении F1 появляются гетерозиготные особи с фенотипом, полностью отличным от фенотипа гомозиготных форм родителей, то говорят, что наследование носит промежуточный характер. При этом выраженность АП оказывается с более или менее выраженным уклоном в сторону кого-то из родителей. Это происходит в том случае, если рецессивные аллели неактивны, а доминантные не имеют достаточной степени активности, чтобы уровень проявления АП доминантной гомозиготы родителя был достаточным для наследования потомством этой черты в полной мере.

Например, если при скрещивании львиного зева с пурпурными и белыми цветками все потомство оказалось с розовыми, это говорит о неполном доминировании аллели, несущей информацию о пурпурном окрашивании. В последующих поколениях происходит фенотипическое расщепление — на два розовых цветка приходит один белый и один пурпурный, т. е. устанавливается соотношение 1:2:1.

Процесс самоопыления

Самоопыление в биологии

Дальнейшие исследования ученый проводил самоопылением гибридов F1. Было установлено, что в F2 появляются особи как с доминантными признаками (красные цветы, желтые семена), так и с рецессивными (белые цветы, зеленые семена) в соотношении 3:1. Это явление называется законом расщепления гибридов второго поколения или вторым законом Менделя.

При самоопылении происходит равновероятное сочетание гамет во время оплодотворения. В F2 может появиться как нерасщепляющееся гомозиготное потомство с одинаковыми аллельными генами (АА или аа) в гомологичных хромосомах, так и гетерозиготные особи с расщеплением и разными аллелями (Аа), образующими два вида гамет.

Дигибридное скрещивание

Дигибридное скрещивание

Организмы отличаются многими фенотипическим чертам, что обусловлено разными генами. Для понимания, как наследуются несколько АП одновременно, нужно провести независимые исследования каждой пары, не уделяя внимания другим. Затем все выявленные особенности сопоставляются и систематизируются. Именно такую задачу выполнил Мендель. Чтобы результат получился достоверным, он скрещивал родительские формы гороха, отличающиеся только двумя парами АП (двумя парами аллелей).

Такой способ комбинирования называется дигибридным, а гибриды, имеющие отличия по двум аллелям, — дигетерозиготными. Если наблюдается отличие по трем и более аллельным генам, то организм называется три- или полигетерозиготным. В результате двойного комбинирования могут получаться разные фенотипы в зависимости от того, как располагаются гены, определяющие АП — в одной или в разных хромосомах.

Для определения наследования признаков при дигибридном скрещивании Мендель выбирал гомозиготные растения с такими АП:

  • разная окраска цветков или семян;
  • различная высота сортов растения;
  • гладкая или морщинистая поверхность семян.

Дигибридное скрещивание, законы Менделя

Исследования проводились только для одной пары признаков, но на протяжении многих лет ученый сочетал АП друг с другом в разных вариантах. Выяснилось, что в F1 появляются особи только с одним АП. Это подтверждало, что правило о единообразии у F1 выполняется, а полученная окраска, высота или гладкость являются доминантными чертами.

Самоопыление гибридов F1 дало в F2 особей с четырьмя фенотипами. Два из них совпадали с родительским, а у двух других появились особенности, сочетающие материнские и отцовские черты. Например, при изучении наследования окраски и гладкости семян получились растения четырех фенотипов: желтые гладкие, желтые морщинистые, зеленые гладкие, зеленые морщинистые в соотношении 9:3:3:1.

Особенности расщепления

Законы Менделя

Результаты показали, что при дигибридном скрещивании у наследования признаков независимая сущность. Можно отметить, что при этом способе скрещивания в F2 наряду с известными появляются новые классовые разновидности. При количественном анализе полученных гибридов выяснилось, что дигибридное расщепление совмещает в себе два моногибридных, происходящих независимо. Первое обусловило разнообразие фенотипов. При рассмотрении второго выясняется, что ход каждого моногибридного скрещивания не нарушается, а соотношения получаются 3:1 у желтых и зеленых, и 3:1 — у гладких и морщинистых.

Такой характер распределения АП при наследовании определяется законом независимого комбинирования или третьим законом Менделя при дигибридном скрещивании расщепление по каждой особенности проходит независимо от других признаков. Этот закон является основой комбинативной изменчивости, который справедлив для всех живых организмов, но только в отношении генов, расположенных в разных гомологичных хромосомах, что было доказано прямым цитологическим методом.

Для наглядности вариантов комбинирования доминантных и рецессивных генов английским генетиком Р. Пеннетом была предложена графическая схема дигибридного скрещивания в виде решетки. Она отображает сочетаемость разных аллелей родительских генов. Решетка Пеннета для опытов Г. Менделя представляет собой таблицу, в которой собраны все возможные варианты генотипов и фенотипов F2.

По одной стороне записываются женские гаметы, по другой — мужские. В ячейках таблицы получаются все возможные варианты, которые можно получить при скрещивании по двум парам контрастных признаков. Законы, выведенные Г. Менделем, легли в основу современных методов селекции растений и животных.

Генетика является точной наукой. В ней есть законы и правила, которые можно проверить через задачи.

Генетика изучает закономерности изменчивости и наследственности. Каждый биологический вид воспроизводит себе подобные организмы. Однако нет идентичных особей, все потомки в большей или меньшей степени отличаются от своих родителей. Генетика дает возможность прогнозировать и анализировать передачу наследственных признаков. Для этого нужно уметь решать задачи по генетике.

При решении задач используются символы.

Латинской буквой Р обозначаются родители,

буквой F — гибридное потомство.

Заглавными буквами обозначаем доминантные гены, а прописными — рецессивные гены.

Заглавной и прописной буквой записываются аллельные гены.

Одинаковыми заглавными буквами обозначаем доминантные гомозиготы, а прописными — рецессивные гомозиготы.

Х — знак скрещивания.

Существуют специальные правила оформления задач по генетике. Предлагаем внимательно посмотреть на образец записи задачи.

Первым принято записывать генотип женской особи, а затем — мужской.

Гены одной аллельной пары всегда пишутся рядом.

При записи генотипа буквы, обозначающие признаки, всегда пишутся в алфавитном порядке, независимо от того, какой признак — доминантный или рецессивный — они обозначают.

Под генотипом всегда пишут фенотип.

У особей определяют и записывают типы гамет, а не их количество.

Правила оформления генетических задач

При решении задач на дигибридное скрещивание для определения генотипов потомства рекомендуется пользоваться решёткой Пеннета. По вертикали записываются типы гаметы от материнской особи, а по горизонтали — отцовской. На пересечении столбца и горизонтальной линии записываются сочетание гамет, соответствующие генотипу образующейся дочерней особи

Рассмотрим правила при решении задач по генетике.

Если при скрещивании двух фенотипически одинаковых особей в их потомстве наблюдается расщепление признаков, то эти особи гетерозиготны.

Если в результате скрещивания особей, отличающихся фенотипически по одной паре признаков, получается потомство, у которого наблюдается расщепление по этой же паре признаков, то одна из родительских особей гетерозиготна, а другая — гомозиготна по рецессивному признаку.

Задачи по генетике имеют единые принципы решения. Но чтобы правильно решать задачи, необходимо определить их тип. Задачи могут быть на моногибридное, дигибридное скрещивание.

Рассмотрим технологию решения задач на моногибридное скрещивание.

У арбуза зеленая окраска плодов доминирует над полосатой окраской. Определите окраску плодов арбузов, которые получаются от скрещивания растений, имеющих гетерозиготные и гомозиготные генотипы.

Для решения этой задачи запишем объект исследования и обозначение генов. Нам дан объект исследования — арбуз. Признак для исследования — окраска арбуза. Доминантный признак зеленой окраски обозначаем заглавной буквой А, а рецессивный признак полосатый окраски — прописной буквой а.

Нам известны генотипы родительских форм.

Необходимо определить окраску плодов арбузов, то есть фенотип первого поколения.

Так как исследуется только один признак — окраска, то задача на моногибридное скрещивание.

Записываем формулу скрещивания для родительских форм.

Определяем тип гамет.

Записываем генотипы первого поколения.

Определяем фенотипы первого поколения.

Записываем ответ. В результате скрещивания растений имеющих гетерозиготные и гомозиготные генотипы, в первом поколении вероятность появления зеленых и полосатых арбузов равна 50% на 50%.

Решим еще один тип задач на моногибридное скрещивание. Условие задачи.

У мышей длинные уши наследуются как доминантный признак. Короткие уши наследуются как рецессивный признак. Скрестили гомозиготного самца с длинными ушами с самкой с короткими ушами. Определить генотип самца, самки и фенотип первого поколения.

Нам дан объект исследования — мыши. Признак для исследования — длина уха. Доминантный признак длинное ухо обозначаем заглавной буквой А, а рецессивный признак — короткое ухо — прописной буквой а.

Определяем генотипы родительских форм. У гомозиготного самца с длинными ушами обозначаем генотип двумя заглавными буквами АА, а у самки генотип двумя маленькими буквами аа.

Необходимо определить фенотип первого поколения.

Записываем формулу скрещивания для родительских форм.

Определяем тип гамет.

Записываем генотипы первого поколения.

Определяем фенотипы первого поколения.

Рассмотрим решение задач на дигибридное скрещивание.

Послушайте условие задачи.

У фигурной тыквы белая окраска плодов А доминирует над желтой а, а дисковидная форма В — над шаровидной b.

Ответьте на вопрос: как будет выглядеть F1и F2 от скрещивания гомозиготной белой шаровидной тыквы с гомозиготной желтой дисковидной?

Рассмотрим решение задачи.

Сначала определяем объект исследования — это тыква, исследуемые признаки: цвет и форма плодов.

Записываем и обозначаем цвет плодов: ген А — белый,

ген а — желтый; форма плодов: ген В — дисковидная

ген b — шаровидная .

Определяем ге­нотипы родительских тыкв. По условиям задачи, тыквы гомозиготны, следо­вательно, содержат две одинаковые аллели каждого признака.

Запишем схему скрещивания родительских растений и определим генотип и фенотип первого поколения.

Как вы видите из схемы скрещивания, генотипы первого поколения тыкв все будут гетерозиготны по двум признакам.

А по фенотипу все белые и дисковидные.

Далее находим генотипы и фенотипы второго поколения. Для этого строим решетку Пеннета и вносим в нее все возможные типы гамет: по горизонтали вносим гаметы женской особи, по вертикали — мужской особи. На пересечении получаем возможные генотипы потомства второго поколения.

Выпишем расщепление гибридов по фенотипу. Они будут следующие: 9 белых дисковидных*, 3 белых шаровидных**, 3 желтых дисковидных, 1 желтая шаровидная***.

Запишем ответ: первое поколение — все белые дисковидные. Во втором поколении — 9 белых дисковидных, 3 белых шаровидных, 3 желтых дисковидных, 1 желтая шаровидная.

Читайте также: