Плоды картофеля содержат соланин который может вызывать отравления у животных

Добавил пользователь Евгений Кузнецов
Обновлено: 21.09.2024

Слово картофель произошло от Kartoffel , которое, в свою очередь, произошло от tartufo, tartufolo — трюфель [1] .

В русскоязычной литературе иногда встречаются также другие русские названия для вида Solanum tuberosum: Картофель европейский, Картофель чилийский, Картофель клубненосный.

Для плодов картофеля имеется несколько народных названий: шелаболки, бульбочки, помидорки.

Ботаническая и морфологическая характеристика

  • Solanum tuberosum L. subsp. andigenum ( Solanum andigenum Solanum andigenum f. guatemalense Solanum subandigenum Solanum tuberosum L. subsp. tuberosum
    • Solanum molinae Solanum tuberosum var. guaytecarum ( Биологические особенности

    Картофель размножают вегетативно — клубнями (и для целей селекции — семенами).

    Прорастание фотосинтеза, роста стеблей, листьев и цветения — 16-22 °С. Наиболее интенсивно клубни образуются при ночной температуре воздуха 10-13 °С. Высокая температура (ночная около 20 °C и выше) вызывает тепловое вырождение. Из семенных клубней развиваются растения с резко пониженной продуктивностью. Всходы и молодые растения повреждаются при заморозках в −2 °C. воды растение потребляет во время цветения и клубнеобразования. Избыток влаги вреден для картофеля.

    На формирование надземной части и клубней расходуется много питательных веществ, особенно в период максимальных приростов вегетативной массы и начала клубнеобразования. При урожае 200—250 ц с 1 га растения извлекают из почвы 100—175 кг азота, 40-50 кг фосфора и 140—230 кг калия.

    Плоды картофеля ядовиты

    Химический состав и питательная ценность

    Из аспарагин и глутамин; среди азотсодержащих фосфора. липиды в картофеле составляют в среднем 0,10— 0,15 % сырой массы. В жирах обнаружены пальмитиновая, миристиновая, линолевая и натрий, кальций, магний, железо, сера, хлор и История культуры

    Монахи, сажающие картофель в 1910 году

    Введение картофеля в культуру (сначала путём эксплуатации диких зарослей) было начато примерно 14 тыс. лет назад [2] 1553 году в городе 1565 года . В дальнейшем культура распространилась в Антуан-Огюст Парментье .

    Произвоство картофеля по странам мира. Данные 2005 года

    Сорта

    Универсальные сорта по содержанию крахмала и белков и вкусовым качествам клубней занимают промежуточное место между столовыми и техническими сортами.

    Популярные сорта картофеля:

    Адретта, Беллароза, Берегиня, Бородянска розовая, Велокс, Витязь, Винета, Витара, Водопад, Воловецка, Гатчинска, Голдика, Древлянка, Джелли, Ертиштольц, Житомирянка, Зарево, Зов, Икар, Кобза, Колетте, Ласунак, Луговска, Нимфа, Нева, Незабудка, Нора, Панда, Петланд Дел, Полесская розовая, Посвит, Пост-86, Подснежник, Радомишльска, Розалинд, Розара, Сантана, Сатину, Сатурна, Рассвет киевский, Слава, Солара, Темп, Украинская розовая, Фельсина.

    В группу пищевых отравлений входят:

    - отравления ядовитыми продуктами,

    - отравления продуктами, ядовитыми при определенных условиях,

    - отравления, вызванные примесями химических веществ.

    Отравления ядовитыми продуктами растительного и животного происхождения - это отравления грибами, дикорастущими растениями, рыбой и железами внутренней секреции убойных животных.

    Отравления грибами чаще всего происходят у детей и взрослых, не знающих отличий съедобных грибов от их ядовитых двойников. Наиболее часты отравления бледной поганкой — путают с сыроежками и шампиньонами, строчками — путают со сморчками, мухоморами — путают с сыроежками, ложными опятами — путают со съедобными опятами (рис. 5.4).

    Бледная поганка вызывает отравление с летальностью от 50 % случаев и более. Токсины обладают гепатотропным и нейротропным действием. Инкубационный период — 10—12 ч, затем бурное нарушение желудочно-кишечных функций, принимающее холероподобный характер, с неукротимой рвотой, поносом, обезвоживанием организма, после чего развиваются желтуха, прекращение мочеотделения, кома и гибель.

    Строчки — весенние грибы (апрель—май), относятся к условно съедобным грибам, так как после 15-минутного кипячения, удаления отвара и промывания они становятся безвредными.

    Мухоморы содержат мускарин, вызывающий отравление через 1—4 ч, сопровождающееся слюнотечением, рвотой, поносом, сужением зрачков, галлюцинациями, бредом, судорогами. Летальный исход редок.

    Отравления ядовитыми растениями также часто встречаются у детей и людей, путающих дикие растения со съедобными огородными и съедобными лесными культурами; например, путают корень веха ядовитого с корнем петрушки, конский щавели с щавелем, плоды крушины с плодами черемухи, вороний глаз с черникой, плоды ландыша со съедобными лесными ягодами, семена белены и дурмана с маком и т.д.

    Отравления ядовитыми продуктами животного происхождения

    Существуют некоторые ядовитые виды рыбы:

    фугу, обитающая в Японском море,

    маринка — в реках Сырдарья и Амударья,

    усач и некоторые другие.

    Ядовитыми также являются надпочечники и поджелудочная железа убойных животных, употреблять их в пищу не рекомендуется.

    Менее часты пищевые отравления растительными и животными продуктами, ядовитыми при определенных условиях.

    Соланин содержится в картофеле, особенно его много в проросшем и позеленевшем, хранившемся на свету. Отравления им редки, но возможны при употреблении большого количества такого картофеля, отваренного в кожуре. Отравление сопровождается тошнотой, рвотой, дисфункцией кишечника.

    Фазин входит в структуру сырой фасоли, при нагревании разрушается. Отравление проявляется диспепсическими явлениями при употреблении сырой фасоли, в случае недостаточной термической обработки и использования в питании фасолевой муки при тех же условиях.

    Амигдалин обнаружен в горьком миндале, ядрах косточковых плодов (абрикосы, персики и др.), при гидролизе отщепляет синильную кислоту. В легких случаях отравление проявляется головной болью и тошнотой, в тяжелых (при употреблении 60—80 г горьких ядер) может быть смертельный исход.

    Фагин содержится в сырых буковых орехах. Прожаренные орехи опасности не представляют. Отравление проявляется головной болью, тошнотой и дисфункцией кишечника.

    Отравления временно ядовитыми органами рыб. В период нереста (икрометания) икра, молоки и печень многих рыб (налима, щуки, скумбрии и др.) становятся ядовитыми. Отравления характеризуются явлениями острого гастроэнтерита, принимающего иногда холероподобное течение.

    Отравления мидиями. Эти моллюски приобретают ядовитые свойства в летнее время, когда они питаются бурно размножающимся планктоном, содержащим сильныйнейротоксин. Отравление проявляется слабостью, тошнотой, головокружением, онемением языка, губ, затрудненностью дыхания, может наступить паралич дыхательного центра.

    Отравления пчелиным медом. Опасность представляет мед, собранный пчелами с ядовитых растений (багульника болотного, рододендрона, азалии, дурмана, белены и др.). Отравление протекает остро, клиническая картина зависит от вида яда.

    Пищевые отравления, вызываемые примесями в продуктах химических веществ. Причинами этой группы пищевых отравлений являются пищевые добавки, остаточные количества пестицидов и химические вещества, поступающие в продукты из оборудования, тары, инвентаря и окружающей среды. При длительном поступлении небольших количеств этих веществ с пищей могут развиться хронические пищевые отравления.

    Отравления нитритами. Они проявляются в виде хронической алиментарной нитратно-нитритной метгемоглобинемии при употреблении колбасных изделий и копченостей (в них добавляют нитриты для придания изделиям аппетитного розовокрасного цвета и задержки развития палочки ботулинуса), а также овощей — свеклы, картофеля, редиса, моркови, кабачков, салата, шпината, цветной капусты, зелени, которые могут содержать нитриты и нитраты при избытке в почве минеральных азотных удобрений. В крови под влиянием нитритов образуется метгемоглобин, не участвующий в переносе кислорода.

    Отравления остаточными количествами пестицидов.

    Широкое использование в сельском хозяйстве пестицидов (ядохимикатов) для борьбы с вредителями растений сделало возможным появление случаев отравления их остаточными количествами в продуктах питания.

    Пестициды делятся по степени токсичности, способности к кумуляции и степени стойкости в окружающей среде.

    Природные токсины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами живых организмов. Эти токсины не опасны для вырабатывающих их организмов, но могут быть токсичны для других, в том числе для человека, в случае их приема с пищей. Эти химические вещества имеют разнообразную структуру и различаются по биологической функции и степени токсичности.

    Некоторые токсины вырабатываются растениями и играют роль защитного механизма против хищников, насекомых или микроорганизмов или же образуются в результате поражения растений микроорганизмами, такими как плесневые грибы, вследствие климатического стресса (засуха или чрезвычайно высокая влажность).

    Другими источниками природных токсинов являются микроскопические водоросли и планктон, обитающие в океанах и иногда озерах и вырабатывающие химические вещества, токсичные для человека, но не для рыб или моллюсков, питающихся этими организмами. В случае употребления человеком рыбы или моллюсков, содержащих эти токсины, может быстро наступить неблагоприятная реакция.

    Ниже приводится описание некоторых природных токсинов, наиболее часто встречающихся в продуктах питания и создающих угрозу для нашего здоровья.

    Биотоксины, вырабатываемые водными организмами

    Токсины, вырабатываемые морскими и пресноводными водорослями, называются водорослевыми. Эти токсины продуцируются некоторыми видами водорослей в период цветения. Вероятность содержания этих токсинов в моллюсках, таких как мидии, устрицы и гребешки, выше, чем в рыбе. Водорослевые токсины могут вызывать диарею, рвоту, ощущение покалывания в конечностях, паралич и другие эффекты у человека, других млекопитающих и рыб. Они могут накапливаться в организме моллюсков и рыбы или заражать питьевую воду. Они не имеют цвета и запаха и не разрушаются в процессе термической обработки или при замораживании.

    Еще одним примером является сигуатера, или отравление в результате употребления в пищу рыбы, зараженной сигуатоксином – веществом, вырабатываемым динофлагеллятами – водными одноклеточными организмами. Сигуатоксин накапливается в организме таких рыб, как барракуда, черный групер, луциан-собака и королевская макрель. Симптомами сигуатеры являются тошнота, рвота и неврологические симптомы, такие как ощущение покалывания в пальцах рук и ног. В настоящее время лечения при отравлении сигуатоксином нет.

    Цианогенные гликозиды

    Цианогенные гликозиды – это фитотоксины (т.е. токсические соединения, вырабатываемые растениями), встречающиеся в составе по меньшей мере 2000 видов растений, многие из которых употребляются в пищу в некоторых регионах мира. К наиболее массово потребляемым продуктам питания, содержащим цианогенные гликозиды, относятся кассава, сорго, ядра косточковых плодов, корни бамбука и миндаль. Токсический потенциал цианогенного растения зависит, главным образом, от того, насколько высокой будет концентрация цианида в организме человека в результате его употребления в пищу. У человека острая интоксикация цианидами может иметь следующие клинические признаки: учащение дыхания, падение кровяного давления, головокружение, головная боль, боль в животе, рвота, диарея, спутанность сознания, цианоз, сопровождаемый фибриллярными мышечными сокращениями и судорогой, после чего наступает терминальная кома. Смерть в результате отравления цианидами может происходить при достижении ими концентраций, превышающих метаболические способности конкретного организма.

    Фуранокумарины

    Эти токсины продуцируются разнообразными растениями, такими как пастернак (растение, родственное моркови и петрушке), корнеклубнях сельдерея, цитрусовых (лимон, лайм, грейпфрут, бергамот) и некоторые лекарственные растения. Фуранокумарины – токсины, вырабатываемые растением в ответ на раздражитель, например, физическое повреждение. У чувствительных людей эти токсины могут вызвать нарушения работы желудочно-кишечного тракта. Фуранокумарины обладают фотосенсибилизирующим действием и могут вызывать серьезные раздражения кожи под воздействием ультрафиолета. Чаще всего такие реакции возникают при попадания сока этих растений на кожу, однако описаны случаи аналогичного эффекта в результате употребления в пищу больших количеств овощей, богатых фуранокумаринами.

    Лектины

    Многие бобы содержат токсины, называемые лектинами. В наибольшей концентрации они присутствуют в фасоли, особенно красной. Всего 4 или 5 сырых бобов могут спровоцировать сильную боль в животе, рвоту и диарею. Лектины разрушаются при замачивании сушеных бобов в течение по меньшей мере 12 часов и их варке на сильном огне в течение не менее 10 минут. Консервированная фасоль уже подвергалась такой обработке и может употребляться в пищу в готовом виде.

    Микотоксины

    Микотоксины – это токсичные вещества природного происхождения, вырабатываемые некоторыми видами плесневых грибов. Плесневые грибы растут на целом ряде видов продовольственной продукции, таких как злаки, сухофрукты, орехи и специи. Появление плесени может иметь место как до, так и после уборки урожая, на этапе хранения и/или на готовых продуктах питания в условиях благоприятной температуре и высокой влажности.

    Большинство микотоксинов отличается химической стабильностью и не разрушается в процессе термической обработки. Присутствующие в продуктах питания микотоксины могут вызывать острую интоксикацию, симптомы которой развиваются вскоре после употребления сильно контаминированных продуктов питания и даже могут привести к летальному исходу. Хроническое потребление микотоксинов с продуктами питания может оказывать долгосрочное негативное воздействие на здоровье, в частности, провоцируя онкологические заболевания и иммунодефицит.

    Соланин и чаконин

    Все растения семейства пасленовых, к которому относятся томаты, картофель и баклажаны, содержат природные токсины соланин и чаконин (гликоалкалоиды). Как правило, концентрация этих веществ в растениях невысока. Тем не менее, в более высокой концентрации они присутствуют в побегах картофеля и кожуре и зеленоватых частях его клубней, имеющих горький привкус, а также в зеленых томатах. Растения вырабатывают токсин в ответ на внешний раздражитель, такой как механическое повреждение, ультрафиолетовое излучение, колонизация микроорганизмами и нападение со стороны насекомых-вредителей и травоядных животных. Для предупреждения возникновения соланина и чаконина в картофеле важно хранить клубни в темном, прохладном и сухом месте. Также не рекомендуется употреблять в пищу позеленевшие или пускающие ростки части клубней.

    Ядовитые грибы

    Дикорастущие грибы могут содержать ряд токсинов, например, мусцимол и мускарин, которые могут вызывать рвоту, диарею, спутанность сознания, нарушения зрения, повышенное слюноотделение и галлюцинации. Симптомы начинают проявляться через 6–24 часа после употребления грибов в пищу. Обычно для смертельного отравления характерно позднее развитие тяжелых симптомов, свойственных поражению печени, почек и нервной системы. Чистка и термическая обработка грибов не позволяют ликвидировать содержащиеся в них токсины. Рекомендуется избегать употребления в пищу любых дикорастущих грибов при отсутствии полной уверенности в их безвредности.

    Пирролизидиновые алкалоиды

    Пирролизидиновые алкалоиды (ПА) – это токсины, которые вырабатывают около 600 растений. В наибольшем количестве их продуцируют растения семейств бурачниковые, астровые и бобовые. Многие из этих растений – сорняки, растущие на сельскохозяйственных угодьях и засоряющие продовольственные культуры. ПА вызывают широкий спектр негативных эффектов. Они могут обладать острой токсичностью. В этой связи главным источником беспокойства является способность некоторых ПА повреждать ДНК клеток, что может провоцировать онкологические заболевания.

    ПА не разрушаются в процессе термической обработки. Они обнаруживаются в травяных сборах, меде, ароматических травах и специях и других видах продовольственной продукции, таких как злаки и продукты на их основе. Тем не менее, уровень их потребления людьми считается низким. Ввиду сложности вопроса и большого числа таких соединений общий риск для здоровья в полной мере еще не определен. Комитет Кодекса ФАО/ВОЗ по загрязняющим примесям в продуктах питания ведет разработку рекомендаций по предупреждению попадания содержащих ПА растений в продовольственную цепочку.

    Что могу сделать я для снижения риска, связанного с природными токсинами?

    Важно помнить, что природные токсины могут присутствовать в целом ряде культур и продуктах питания. В нормальном сбалансированном здоровом рационе концентрация природных токсинов намного ниже порогов острого и хронического токсического действия.
    Для снижения риска для здоровья, связанного с присутствием природных токсинов в продуктах питания, рекомендуется:

    • выбрасывать поврежденные, мятые, изменившие цвет и, в частности, плесневые продукты питания;

    • выбрасывать продукты питания, которые на запах или вкус не являются свежими или имеют непривычный вкус;

    • употреблять в пищу только те грибы или дикие растения, которые точно не являются ядовитыми.

    Деятельность ВОЗ

    ВОЗ в сотрудничестве с ФАО отвечает за оценку риска, который представляют природные токсины для человека в результате контаминации продуктов питания, и выработку рекомендаций по обеспечению необходимой защиты.

    Оценка риска в связи с присутствием природных токсинов в продуктах питания выполняется Комитетом экспертов ФАО/ВОЗ по пищевым добавкам (JECFA) и используется правительствами стран и Комиссией Кодекс Алиментариус (нормативным межправительственным органом по пищевым стандартам) для определения предельных допустимых значений концентрации различных примесей в продуктах питания или выработки других рекомендаций по управлению рисками в интересах предотвращения или снижения контаминации. Стандарты Кодекса являются международным ориентиром для национальных производителей продовольствия и торговли продовольствием и призваны гарантировать потребителям во всем мире, что приобретаемые ими продукты питания соответствуют установленным стандартам безопасности и качества, где бы они ни были произведены.

    JECFA устанавливает предельно допустимые уровни потребления различных природных токсинов.
    В состав JECFA или специальных научных экспертных групп ФАО/ВОЗ входят независимые международные эксперты, которые проводят научные обзоры всех опубликованных исследований и других данных по отдельным природным токсинам. По итогам этой работы по оценке риска для здоровья устанавливаются либо предельные допустимые уровни потребления или формулируются другие рекомендации для обозначения степени опасности для здоровья (например, пределы экспозиции). Выдвигаются рекомендации относительно управления рисками и мер по предотвращению и снижению контаминации, а также аналитических методов и мероприятий по мониторингу и контролю.
    Во избежание нанесения ущерба здоровью людей содержание природных токсинов в продуктах питания должно быть максимально низким. Природные токсины не только являются источником риска для здоровья человека и животных, но и негативно воздействуют на ситуацию с продовольственной безопасностью и питанием, поскольку ограничивают доступ людей к здоровой пище. ВОЗ настоятельно рекомендует национальным органам власти вести мониторинг содержания наиболее значимых природных токсинов в продовольственной продукции, реализуемой на их рынке, и принимать меры для максимального его сокращения и обеспечивать соблюдение международных рекомендаций по предельно допустимым значениям, условиям хранения и законодательству.

    Отдел Цветковые Angiospermae
    Класс Двудольные Magnoliopsida
    Порядок Пасленоцветные Solanales
    Семейство Пасленовые Solanaceae
    Род Паслен Solanum
    Подсекция potatoe
    Вид Solanum tuberosum
    Подвид tuberosum

    Картофель — многолетнее травянистое растение из семейства пасленовых. Его плоды ядовиты, в пищу употребляют только клубни — видоизмененные подземные побеги. То, что мы называем картофелем, содержит лишь малую толику его настоящего генетического разнообразия. В Южной Америке растет около 200 его диких видов и подвидов, но все известные сейчас культурные сорта (более 5000) относятся к одному роду Solanum . Этот род подразделяется на несколько подсекций, и все клубнеобразующие виды картофеля относятся к подсекции potato ; сейчас считается, что весь культивируемый картофель относится к 4 видам (раньше его разделяли на 7-10): это Solanum tuberosum и три гибридных вида горького картофеля. S.tuberosum подразделяется на два подвида: tuberosum и andigena . Первый представляет собой тот самый картофель, который едят сейчас во всем мире, второй — сельскохозяйственные культуры, которые ограниченно выращивают только в Центральной и Южной Америке.

    История вопроса

    Вредители

    Вредители

    Родина картофеля — Южная Америка, а точнее, перуанские Анды. Долгое время считалось, что картофель был введен в культуру одновременно в нескольких местах, что ранние культивируемые формы имеют независимое происхождение от нескольких разных видов, но последние генетические исследования показали, что это не так. Одомашнивание картофеля произошло в высокогорьях южного Перу около 7-10 тыс. лет назад, после чего картофель стал основным продуктом питания инков. В Перу существуют сотни его местных разновидностей, когда-то практически каждая семья выращивала свой собственный сорт картофеля, и знания по выращиванию этих уникальных клубней передавались из поколения в поколение. Крестьяне постоянно проводили селекцию новых и новых сортов, добиваясь устойчивости к разнообразным вредителям, болезням и климатическими изменениями. Благодаря этому количество сортов картофеля быстро увеличивалось, обеспечивая очень высокое биоразнообразие. Будучи основной пищей андских крестьян, картофель также играл и важнейшую роль в их культуре: единицей измерения времени у них был период, необходимый для приготовления горшка картофеля, а единицей измерения площади служил участок (топо), с которого можно собрать достаточный для прокорма одной семьи в течение сезона урожай картофеля.

    В Европе картофель появился во второй половине XVI века после испанского завоевания инков. Из Нового Света в Европу прибыла лишь небольшая часть андского многообразия, причем далеко не самая удачная — неустойчивая к фитофторозу, колорадскому жуку и нематоде. Ограниченное генетическое разнообразие у завезенного в Европу картофеля привело к постепенному вырождению этой культуры и сделало ее очень уязвимой: паразиты и болезни быстро распространялись с одного растения на другие. В 1840-х годах по Европе прошла эпидемия картофельного фитофтороза, от которой больше всех пострадала Ирландия, где картофель к тому времени успел стать основным продуктом питания (на него приходилось 80% потребляемых калорий).


    Сорт картофеля "Сирень"

    Фото: ГНУ ВНИИКХ им. А.Г. Лорха

    В России картофель стали выращивать при Петре I, но лишь с целью использовать его как лекарственное растение. Всерьез заниматься картофелем начала лишь Екатерина II. Она поручила начать его разведение Абраму Ганнибалу, уже имевшему с картофелем дело. Вскоре Екатерина приказала разослать клубни картофеля вместе с инструкциями по его разведению по губерниям. Но крестьяне не желали принимать новую культуру (тем более что ей приписывали дьявольские свойства) и встретили ее картофельными бунтами. Тем не менее, с 1840 года площади картофельных полей в России начали интенсивно увеличиваться, и уже через несколько десятилетий картофель не только признали в народе, но и стали называть "вторым хлебом".

    Теперь картофель выращивают почти в 100 странах, это четвертая продовольственная культура в мире — после риса, пшеницы и кукурузы. Он успешно растет в умеренных, субтропических и тропических широтах, предпочитая при этом прохладную погоду: при температуре ниже 10°C и выше 30°C рост клубней резко замедляется. В тропическом климате картофель растет в холодные месяцы года.

    Сейчас больше всего картофеля на душу населения производят в Европе (особенно в Восточной и Центральной Европе), но ей в затылок уже дышит южная и восточная Азия. Китай уже сейчас выращивает самые большие урожаи картофеля в мире, на 2 месте — Россия, которая собирает вдвое меньше, 3 место у Индии. В России средняя урожайность картофеля 13 т/га, в Китае — 14,5 т/га, а, например, в Голландии — 45 т/га. Россия значительно отстает даже от среднего мирового уровня (17 т/га). В год у нас в стране собирают около 30 млн тонн, из них около 100 тыс. тонн экспортируется за рубеж, в то время как импортируется около 500 тысяч тонн.

    Зачем нужна картошка

    Картофель выращивается не только в строго пищевых целях. Его используют в качестве корма для домашних животных, для производства алкогольных напитков. Картофельный крахмал может применяться в пищевой промышленности как загуститель для супов и соусов, в текстильной промышленности, а также для изготовления клея, бумаги и картона. Сейчас изучается возможность использования отходов картофеля для получения полимолочной кислоты, применяемой в производстве пластмассовых изделий; ведутся исследовательские работы по поиску способов использования крахмала в качестве основы для экологически чистой упаковки.

    Холодная картошка полезнее

    Болезни и вирусы

    Болезни и вирусы

    Годовой рацион современного человека составляет около 33 кг картофеля. Средних размеров картофелина весит 150 г и содержит примерно 27 мг витамина С (45% от дневной нормы), 620 мг калия (18% от дневной нормы), 0,2 мг витамина В6 (10% от дневной нормы), а также тиамин, рибофлавин, фолиевую кислоту, ниацин, магний, фосфор, железо и цинк. Картофель известен высоким содержанием углеводов (примерно 26 г в картофелине среднего размера). Преобладающей формой углеводов в картофеле является крахмал (в среднем 17,5% в свежем картофеле или 75-80% в пересчете на сухое вещество).

    Картофельный крахмал состоит из разветвленного амилопектина и линейной амилозы, их соотношение зависит от сорта картофеля. Амилоза, с длинными цепями молекул, водорастворима, она диффундирует из гранул крахмала при варке в воде. Амилопектин с сильно разветвленными молекулами состоит из той же амилозы и более сложного углевода — пектина. Сорта с более высоким содержанием амилопектина меньше развариваются и сохраняют свою форму при варке. Небольшая часть этого крахмала устойчива к перевариванию и не всасывается в тонком кишечнике — это резистентный крахмал. Причем чем больше содержание амилозы, тем выше будет доля резистентных крахмалов в картофеле. Считается, что этот крахмал — так же, как волокна целлюлозы — обеспечивает защиту толстой кишки от рака, снижает уровень холестерина в крови, повышает ощущение сытости и даже снижает накопление жира. Количество резистентного крахмала в картофеле во многом зависит от способа его приготовления. Например, если в готовом картофеле содержится около 7% резистентного крахмала, то при охлаждении его становится больше примерно на 13%.

    Не отравишься, так заболеешь

    Как и другие представители семейства пасленовых (белена, дурман, табак, паслен), картофель содержит токсичные соединения — гликоалкалоиды, из которых наиболее распространенны соланин и чаконин. Соланин обладает фунгицидными и инсектицидными свойствами и защищает растение от хищников. Для человека и животных он токсичен даже в небольших дозах. Как правило, ядовитые соединения накапливаются в листьях, стеблях, побегах и плодах, но воздействие света и физические повреждения приводят к повышению содержания гликоалкалоидов в клубнях. Особенно много гликоалкалоидов сосредоточено непосредственно под кожей, в позеленевших и проросших клубнях. В диком картофеле концентрация токсинов достаточно высока для отравления человека. Они угнетающе действуют на центральную нервную систему, могут вызывать головную боль, диарею, обезвоживание, лихорадку, судороги, а в тяжелых случаях кому и смерть, однако, в реальности отравления картофелем происходят очень редко. Некоторые сорта картофеля отличаются особенно высоким содержанием гликоалкалоидов; от них селекционерам приходится отказываться, даже если они перспективны в других отношениях.


    Профессор Виктор Старовойтов, заместитель директора по науке ВНИИ картофельного хозяйства имени А.Г. Лорха, доктор технических наук

    Фото: Евгений Дудин, Коммерсантъ

    "Содержание алкалоидов в мякоти клубней составляет 10-50 мг/кг, — рассказывает замдиректора по науке ВНИИ картофельного хозяйства имени Лорха профессор Виктор Старовойтов, — в кожице клубня их концентрация выше; в целом в клубне их содержится от 20 до 100 мг/кг. При высоком содержании алкалоидов (150-200 мг/кг сырого веса) картофель становится горьким, при концентрации 230-270 мг алкалоидов на килограмм сырого веса может наступить отравление организма. Однако при кулинарной обработке количество гликоалкалоидов в клубнях снижается за счет термического разрушения до более простых соединений, которые, к тому же, частично вымываются и остаются в растворе".

    В 2002 году в картофеле было обнаружено еще одно вредное вещество — акриламид. Акриламид появляется при высокотемпературной обработке многих крахмалистых продуктов (в первую очередь, картофеля и злаков), если их жарить, готовить во фритюре, запекать в духовке или на гриле. В тех же самых сырых или вареных продуктах его нет. Дальнейшие исследования показали, что причина не в крахмале: картофель и злаковые наряду с крахмалом содержат аминокислоту аспарагин, а при нагревании от 120 градусов и выше при взаимодействии с сахарами аспарагин превращается в акриламид. Если же продукты не жарить, а варить, акриламид в них не образуется совсем или его содержание незначительно.

    "Еще 10 лет назад никто не знал о том, что акриламид может содержаться в пищевых продуктах, — говорит Софья Лущеницкая, научный сотрудник химфака МГУ, — было известно, что это вещество может содержаться в пластиковых упаковках, в табачном дыме, иногда в небольшом количестве попадает в воду, и что оно обладает мутагенными свойствами. И вдруг в 2002 году ученые из Стокгольмского университета обнаружили, что во многих продуктах содержание акриламида в сотни и тысячи раз превышает любые возможные ПДК. Он в разных концентрациях был обнаружен в чипсах, жареном картофеле, в хрустящих хлебцах, выпечке, мюслях и кукурузных хлопьях". Авторы работы, опубликованной в 2009 году в American Journal of Clinical Nutrition, обнаружили, что если ежедневно в течение двух недель потреблять 157 мг акриламида из картофельных чипсов, это может запустить процессы, которые в итоге становятся причиной заболеваний сердца. У женщин, часто употребляющих акриламидные продукты, рак груди встречается в 2 раза чаще, чем у тех, кто их избегает. Есть данные, что это вещество увеличивает риск рака яичников на 79%, матки — на 28%, а почек — на 59%.

    Генетика и селекция


    Во Всероссийском научно-исследовательском институте картофельного хозяйства имени А.Г. Лорха безвирусный семенной картофель выращивают методом микроклонального размножения in vitro

    Фото: Евгений Дудин, Коммерсантъ

    В 2009 году была закончена расшифровка генома картофеля. Картофельный геном имеет средний для растений размер, он содержит 12 хромосом и 860 млн пар оснований. Расшифровкой каждой хромосомы картофеля занималось одно или несколько государств; российские ученые из Центра биоинженерии РАН приняли участие в расшифровке 12-й хромосомы. Картофель S. tuberosum tuberosum представлен диплоидомыми (2n=24) или тетраплоидомыми (4n=48) формами. Диплоиды встречаются только в Чили, а культивируемый во всем мире картофель является тетраплоидом. Происхождение тетраплоидов обеспечивается благодаря характерному для видов рода Solanum феномену нередуцированных гамет: у большинства из них, кроме нормальных гаплоидных гамет, с частотой 2-10% могут встречаться гаметы с нередуцированным (двойным) числом хромосом.

    Для того чтобы повысить резистентность картофеля к вредителям и болезням, повысить урожайность и усилить его ценные качества, люди уже много веков подряд занимаются селекцией картофеля. А так как картофель размножается в основном вегетативным путем, селекционеры не отбирают его по способности цветков привлекать опылителей. В результате большинство сортов картофеля имеют пониженную способность к цветению, а естественное — перекрестное — опыление необходимо для поддержания разнообразия. Цветущие сорта картофеля, способные привлекать опылителей, еще остались в мелких фермерских хозяйствах в Андах, но и там многие древние сорта, традиционно выращиваемые перуанскими фермерами, уже утрачены. Для сохранения и защиты того, что осталось, в Перу создан крупнейший в мире банк, где в стерильных условиях хранятся образцы генетического материала — около 100 диких видов картофеля из восьми латиноамериканских стран, а также 3800 традиционных андских сортов.

    Генная модификация

    В начале 1990-х годов транснациональная корпорация Monsanto, лидер в сфере высоких технологий в сельском хозяйстве, выпустила для коммерческого использования трансгенные сорта картофеля, резистентные к колорадскому жуку и вирусным заболеваниям. Устойчивость к вредителям достигалась благодаря включению генов бактерии Bacillus thuringiensis , которая вырабатывает специфический белковый эндоксин, обладающий инсектицидным действием. Немецкая химическая компания BASF создала модифицированный картофель (сорт Amflora), состав которого был изменен (он содержит только амилопектин) так, что он стал несъедобным, но более подходящим для производства крахмала. После долгих споров Еврокомиссия в прошлом году разрешила выращивать этот сорт в ЕС в промышленных целях. В прошлом же году группа индийских ученых объявила, что они разработали генетически модифицированный картофель, который содержит вдвое больше белка, чем обычный (благодаря добавлению гена AmA1 амаранта).

    Трансгенные сорта картофеля позволяют значительно увеличивать его урожайность, добиться появления принципиально новых свойств и открывают большие возможности для его использования в промышленности. Но общество с недоверием относится к генномодифицированным продуктам, и многие крупные компании (McDonald's, Burger King, Frito-Lay, и Procter&Gamble) отказываются от использования ГМ-картофеля. Впрочем, ученые надеются, что развивающиеся страны, где более миллиарда человек страдает от хронического недоедания, отнесутся к нему с большим интересом.

    ГМ-картофель в России

    В России с генномодифицированным картофелем ситуация странная. У нас сертифицировано 4 сорта ГМ-картофеля, два из которых разработала Monsanto, а два ("Елизавета плюс" и "Луговской плюс") — российский Центр биоинженерии РАН, но сертифицированы они только для употребления в пищу: есть их в России можно, а выращивать — нельзя.

    Россия является одной из главных картофелеводческих стран мира, но из-за колорадского жука происходят огромные потери урожая, особенно в южных регионах страны. Ежегодные потери от колорадского жука оцениваются в 2-2,5 млрд долларов. Генномодифицированный картофель, устойчивый к нему, мог бы решить эту проблему. Он прост в выращивании и не требует применения инсектицидов. "Мы разработали 2 сорта генномодифицированного картофеля, устойчивого к колорадскому жуку, — рассказывает доктор биологических наук, замдиректора по научной работе Центра биоинженерии РАН Николай Равин. — Эти сорта жук не ест. Мы проводили полевые испытания: высаживали две грядки картофеля, на одной наш сорт (устойчивый), на другой — исходный, от которого он произошел. В результате одна грядка оказывалась полностью съедена жуком, другая же осталась неповрежденной. Существуют еще американские сорта (созданные Monsanto), но они не приспособлены к нашим климатическим условиям. Мы же брали сорта, которые давно и успешно выращиваются в России и привносили в них дополнительный признак — устойчивость к колорадскому жуку".

    "На данный момент у нас нет разрешения продавать семенной материал для выращивания на полях: есть можно, импортировать можно, а выращивать нельзя, — продолжает Равин. — Люди боятся генномодифицированных продуктов, на мой взгляд, совершенно безосновательно. Им по телевизору рассказывают страшилки, что взяли ген какого-нибудь страшного организма (например, скорпиона), вставили в картошку, и если вы съедите эту картошку, то сами превратитесь в скорпиона. Научной основы под этими страшилками нет никакой. Другой вопрос, что существует опасность утечки модифицированного генного материала в окружающую среду — опасность передачи новых генов диким родственникам. Поэтому генномодифицированные сорта должны сажаться отдельно, нужно избегать их контакта с сородичами; но это уже вопрос техники ведения сельского хозяйства. В случае картофеля это проблема вообще не очень актуальна: размножается он, в основном, вегетативным путем".


    Актуальность проблемы

    Обеспечение безопасности пищевых продуктов — одна из главных задач современного общества. Болезни, связанные с потреблением небезопасных пищевых продуктов, оказывают значительное воздействие на здоровье человека. В отдельных случаях это может вызвать летальный исход.

    Всем известно, что питание является важнейшим фактором сохранения здоровья, профилактики ряда заболеваний, обеспечивает нормальный рост и развитие детей, подростков, поддерживает высокую работоспособность взрослого населения, улучшает качество и продолжительность жизни. Но не стоит забывать, что практически во всех естественных пищевых продуктах содержатся и потенциально опасные для организма человека факторы. Характер их различен. Различно и влияние их на здоровье человека.

    Вредные факторы пищи можно разделить на следующие группы: биологические, химические факторы, природные токсины.

    Биологические факторы

    Контаминация продуктов питания гельминтами, простейшими, бактериями, вирусами, прионами определяется как биологический фактор.

    По данным ВОЗ, пищевые токсикоинфекции в 22 % случаев связаны с микробной контаминацией яиц и яичных продуктов (только при употреблении сырых яиц), в 13 % — пирожных и мороженого, в 15 % — мяса и мясных продуктов, в 8 % — молока и молочных продуктов. Также установлено, что самое большое число — 40 % — пищевых заболеваний связаны с домашним приготовлением пищи, 22 % инфекций возникает в ресторанах и кафе, 9 % — в детских садах и школах, 3 % — в больницах.

    Несмотря на систему эпидемиологического и бактериологического контроля на разных этапах пищевого производства, сохраняется проблема возникновения частых пищевых токсикоинфекций. В эпидемиологическом отношении лидерами остаются бактерии группы Salmonellae, вызывающие пищевую инфекцию, и Clostridium botulinum, вызывающие интоксикацию.

    Огромное значение имеют вирусы гепатита А и энтеровирусы, способные формировать хроническое поражение многих органов и систем. Относительно новой проблемой являются прионовые инфекции, вызывающие развитие, например, болезни Крейтцфельда- Якоба и характеризующиеся недостаточной изученностью пищевых цепей и неэффективностью лечения. Заражение многими гельминтами и простейшими также происходит пищевым путем.

    Отмечается непрерывная изменчивость микроорганизмов, в результате чего меняется их чувствительность к антимикробным факторам, осваиваются новые экологические ниши, изменяются патогенность и вирулентность. Так, к числу стремительно распространяющихся микроорганизмов, передающихся пищевым путем, относится Campylobacter jejuni.

    Возбудитель ботулизма освоил новую среду обитания — вакуумную упаковку. Появились новые вирулентные штаммы сальмонелл и кишечной палочки, вызывающие отдаленные внекишечные осложнения и устойчивые к современным антибактериальным средствам. Установлено, что разные виды бактерий могут обмениваться между собой генами устойчивости к антибиотикам.

    Важной проблемой является микотоксикоз. Микотоксины обладают мутагенной, тератогенной и канцерогенной активностью, могут сохраняться при переработке пищевого сырья, устойчивы к внешнесредовым воздействиям. Афлатоксины – метаболиты грибов рода Aspergillus – способны вызывать острое поражение печени при попадании больших доз токсина. Малые дозы афлатоксинов индуцируют рак печени, причем характерной особенностью их действия является отдаленность (через десятилетия) развития болезни.

    Химические факторы

    Подавляющее большинство пищевых продуктов в качестве неизбежных примесей содержат ксенобиотики и химические токсиканты, такие как пестициды и продукты их разложения, антибиотики, фунгициды, гормоны и их метаболиты, тяжелые металлы, диоксины, в том числе радионуклиды (цезий-137, стронций-90, йод-131).

    Первичное загрязнение большинством веществ этой группы возникает как результат промышленных выбросов и неправильной организации сельскохозяйственного производства. Попадание в пищевые продукты происходит через почву и воду. Как в окружающей среде, так и в пищевых продуктах химические токсины сохраняются длительно, проходя по всем звеньям пищевой цепи.

    Воздействие химических контаминантов, которые могут попасть в пищевые продукты в дозах превышающих предельно-допустимые, заключается как в общетоксическом действии, так и в появлении специфических и отдаленных эффектов (аллергенного, мутагенного, тератогенного или канцерогенного ).

    Важной группой токсических веществ являются диоксины и полихлорированные дифенилы (ПХД). Диоксины по большей части образуются при сгорании различных синтетических веществ. ПХД специально производились для нужд электротехники. Сейчас их производство резко сокращено, но они крайне устойчивы в окружающей среде и продолжают циркулировать как в воде, так и в пище. Эти вещества токсичны, угнетают иммунную и эндокринную системы, ряд других функций организма, а также обладают канцерогенным действием.

    В сельском хозяйстве широко используются пестициды, гербициды, удобрения, стимуляторы роста животных и т. д. Пестицидам изначально свойственна токсичность, и их нередко выявляют в различных пищевых продуктах.

    В России сейчас использование пестицидов значительно снизилось, и стали применяться современные менее токсичные и короткоживущие препараты.

    Однако в СССР использовались в большом количестве пестициды типа ДДТ и другие хлорорганические соединения. Несмотря на то что эти препараты перестали использовать еще в 1988 г., их влияние и по сей день отмечается на производимом сырье. Недавнее исследование экспертов ВОЗ выявило их присутствие в пищевых продуктах, воде и грудном молоке у населения региона Аральского моря, где ранее активно использовались ядохимикаты при выращивании хлопка.

    В Евросоюзе и в Норвегии также отмечается значительное пестицидное загрязнение воды и пищи. Во Франции, Швеции, Израиле, Испании были выявлены значительные уровни содержания хлорорганических соединений не только в воде, почве и пище, но и в женском молоке.

    Весьма часто обнаруживается загрязнение мяса и мясных продуктов метаболитами гормонов, используемых для ускорения роста сельскохозяйственных животных. Попадая в организм человека, они нарушают равновесие эндокринной системы, могут вызывать изменения в репродуктивной сфере. Нитраты, присутствующие в воде, почве, пище, также оказывают негативное действие на организм.

    Токсические вещества по- разному накапливаются в пищевых продуктах, что зависит как от особенностей пищевых цепей и производства продуктов, так и от химической природы токсиканта. Контаминация пищевых продуктов вредными химическими веществами представлена в таблице № 2.

    Токсические эффекты химических факторов весьма разнообразны, что определяется тропностью к конкретным тканям организма и сродством к определенным ферментам. Так, свинец обладает тропностью к нервной системе, особенно в раннем возрасте, нарушая правильное развитие и функции мозга. Кадмий повреждает прежде всего иммунную и репродуктивную системы, вызывает тератогенные эффекты. Многие ксенобиотики и токсиканты обладают канцерогенными свойствами, в том числе прямыми. В настоящее время определена роль отдельных токсических веществ в развитии некоторых форм рака, заболеваний сердечно-сосудистой и нервной систем, а также печени и почек.

    В современной литературе обсуждается негативное действие химических токсинов в тех случаях, даже когда их количество в пищевых продуктах существенно ниже уровня установленных гигиенических нормативов. Доказано модифицирующее действие химических факторов малой интенсивности, обусловливающее неспецифическое влияние на здоровье человека. В его основе лежит системное нарушение гомеостаза организма, в результате которого наблюдается увеличение числа и ухудшение течения практически любых заболеваний, независимо от их этиологии.

    Природные токсины

    В данную группу включаются вещества разнообразной химической структуры, присутствие которых в пищевом продукте обусловлено самой природой.

    Так, в картофеле присутствует гликозид соланин, который может вызывать отравление. В миндале и в ядрах абрикоса обнаруживается амигдалин, в ямсе — диоскорин. В ряде случаев эти вещества накапливаются в продуктах в значительных количествах при нарушении технологии хранения и/или переработки.

    Интересно, что часть природных пищевых токсинов фармакологически активна, а продукты, их содержащие, используются в медицине и в лечебном питании. Так, включение картофеля в рацион больных язвенной болезнью и гастритом обусловлено в том числе и наличием соланина. Будучи гликозидом, родственным по структуре и свойствам сердечным гликозидам, соланин улучшает репаративные процессы в стенке желудка, нормализует моторную функцию желудочно-кишечного тракта, улучшает кровообращение и энергообеспечение. Препараты, получаемые из ямса, используются для регуляции гормонального статуса в связи с наличием в его составе диоскорина — вещества, близкого по своему строению к стероидным гормонам.

    Однако многие природные пищевые токсины не обладают лечебным потенциалом, следовательно, продукты, их содержащие, должны употребляться в ограниченном количестве. Например, в бобовых, особенно в соевых бобах, содержатся ингибиторы протеаз — вещества, полезные для самих растений, накапливающиеся в семенах и предназначенные для лучшего сохранения семян в природе. Однако блокирование протеолитических ферментов в желудочно-кишечном тракте приводит к недостаточному перевариванию белков бобовых продуктов, нарушению работы органов пищеварения, развитию дисбактериоза кишечника. Использование высокоценных белков сои в питании человека возможно только после удаления из пищевого сырья ингибиторов протеаз. Именно отсутствием ингибиторов протеаз, а также неперевариваемых олигосахаридов (стахиозы и рафинозы) отличается изолят соевого белка, успешно применяемый в лечебном и профилактическом питании.

    Кроме вышеописанных вредных пищевых факторов следует упомянуть и о неоднозначном влиянии на здоровье человека некоторых традиционных пищевых веществ. Классическим примером этого является холестерин, жизненно важное значение которого обусловлено участием в нескольких метаболических путях, а также его ролью структурного элемента клеточных мембран. Однако при определенных условиях, в частности при развитии нарушений липидного метаболизма в печени, становится необходимым снижать пищевое поступление холестерина.

    Другим примером негативного влияния пищевого вещества на здоровье является чрезмерное употребление сахара и поваренной соли, хлорида натрия. Внутри каждой группы макронутриентов имеются особенности употребления определенных видов белков, жиров, углеводов, способных ухудшать состояние различных систем организма и способствовать прогрессированию патологического процесса, имеющегося у человека.

    Приведенные примеры показывают, что даже нетоксичные по своей сути и жизненно необходимые вещества могут оказывать негативное влияние на здоровье человека, и это должно быть учтено при планировании индивидуального и лечебного питания.

    Даже этот краткий обзор дает представление о многообразии потенциально опасных факторов, которые могут присутствовать в пище и влиять на здоровье современного человека. Прогнозируется их дальнейший рост и появление новых токсикантов.

    В настоящее время имеются и отчетливые изменения человеческой популяции. Они выражаются в том, что растет число уязвимых категорий людей, а именно пожилых и старых, увеличивается число больных хроническими заболеваниями, иммунодефицитом различного происхождения.

    С учетом данных прогнозов ясно, что подверженность человека действию вредных пищевых факторов будет возрастать. Следовательно, актуальными становятся контроль, мониторинг и создание системы профилактики контаминации пищи. Принятые в настоящее время в Европе меры по обеспечению пищевой безопасности уже дают определенный эффект и должны совершенствоваться в дальнейшем.

    Несомненно, нулевой риск невозможен. Необходимо применение способов защиты, то есть в первую очередь усиления противоинфекционной системы и системы детоксикации.

    Инактивация (обезвреживание) химических соединений в организме происходит по единому механизму, а именно — при взаимодействии с белками системы детоксикации. Большинство химических агентов, попадая в организм, подвергаются биотрансформации, то есть ферментному превращению исходных плоховыводимых химических веществ в неактивные и легковыводимые из организма. Биотрансформация является каскадным процессом, в котором одновременно или поочередно участвуют многие ферменты и белки организма. Как правило, биотрансформация происходит в три этапа: 1-я фаза — модификации (активации), 2-я фаза — детоксикации, 3-я фаза — выведения. В каждой фазе участвуют специфические системы ферментов.

    Для успешного функционирования системы детоксикации требуется наличие многих веществ: аскорбатов, токоферолов, минеральных веществ (например серы, цинка, меди), витаминов и др. Однако главным условием ее полноценного функционирования является достаточное поступление в организм белка, полноценного по своему аминокислотному составу. Напряженная работа ферментов детоксикации требует постоянного восполнения и синтеза новых молекул белка.

    Многими исследователями было выявлено, что адекватное обеспечение организма белком практически нивелирует токсические эффекты различных токсикантов. Так, в исследованиях академика А. А. Покровского показано, что введение животным афлатоксина на фоне полноценного белкового питания приводило лишь к незначительным изменениям активности отдельных печеночных ферментов без нарушения морфологической структуры органа. При недостаточном количестве белка в рационе введение афлатоксина приводило к резким изменениям ферментной активности, выраженным морфологическим нарушениям и печеночному цитолизу. Изучение состояния системы детоксикации у людей, находящихся в постоянном контакте с химическими токсикантами, показало, что процессы детоксикации резко возрастают при дотации полноценного высококачественного белка. При этом улучшается и инактивация свободных радикалов, что важно для радионуклидного поражения.

    Безопасность по закону

    В современном мире имеется многообразие вредных пищевых факторов и отмечается их прогрессивный рост. Системы контроля и профилактики нежелательного воздействия пищи на уровне окружающей среды и производства пищевых продуктов недостаточно эффективны. Действия по обеспечению безопасности пищевых продуктов должны охватывать пищевую цепь на всем ее протяжении — от производства до потребления.

    Одним из способов защиты на уровне организма является активация функциональной системы детоксикации путем нутритивной коррекции белкового обеспечения, который отличается физиологичностью и эффективностью.

    Данными актами введены обязательные требования к продукции, в том числе к процессам ее производства, эксплуатации, хранения, перевозки, реализации и утилизации. Безопасность пищевых продуктов представлена как состояние обоснованной уверенности в том, что пищевые продукты при обычных условиях их использования не являются вредными и не представляют опасности для здоровья нынешнего и будущего поколений. // ПД

    Таблица № 1. Примеры инфекционных заболеваний, часто связанных с конкретными пищевыми продуктами

    Продукт Болезни пищевого происхождения
    Сырое молоко Бруцеллез, кампилобактериоз, заражение энтерогеморрагическими E.coli, сальмонеллез
    Творог из сырого молока Листериоз, интоксикация Staphylococcus aureus, сальмонеллез, бруцеллез
    Мясо и мясные продукты Кампиллобактериоз, заражение энтерогеморрагическими E.coli, сальмонеллез, листериоз, интоксикация Staphylococcus aureus, ботулизм, тениоз, трихинеллез
    Яйцо и яичные продукты Сальмонеллез
    Рыба и морепродукты Сальмонеллез, вирусный гепатит А, гистаминная интоксикация
    Рис, макаронные изделия и другие зерновые продукты Интоксикация Bacillus cereus, интоксикация Staphylococcus aureus
    Фрукты, овощи Шигеллез, амебиаз
    Шоколад Сальмонеллез

    Таблица № 2. Присутствие некоторых токсикантов в пищевых продуктах

    Токсиканты Пищевые продукты
    Мышьяк Питьевая вода
    Свинец Мясо свежее и консервированное, моллюски, ракообразные, фрукты свежие и консервированные, соки, детское питание
    Кадмий Зерновые, мука, овощи, моллюски, ракообразные
    Ртуть Рыба и рыбные продукты, грибы
    Афлатоксины (токсикант биологического происхождения) Крупы, орехи, сушеные фрукты, пряности, зерновые, мука
    Радионуклиды Зерновые, овощи, фрукты, вода
    Пестициды, в том числе хлорорганические, и диоксины Молоко цельное и сухое, сливочное масло, растительные и животные жиры, питьевая вода

    Таблица № 3. Некоторые природные токсины и продукты, их содержащие

    Вещество Продукт
    Гемагглютинин Красная фасоль
    Цианиды Лимская фасоль
    Оксолиновая кислота Шпинат
    Соланин Картофель
    Ингибиторы протеазы Бобовые
    Фитиновая кислота Отруби

    Мероприятия

    Читайте также: