Суточный ход фотосинтеза зависимость его от возраста дерева связь фотосинтеза с урожаем

Добавил пользователь Валентин П.
Обновлено: 19.09.2024

Первичные продукты фотосинтеза, включаясь в реакции вторичного метаболизма, служат источником энергии и углерода для разнообразных конструктивных процессов в растительной клетке. Интермедиаты цикла Кальвина и С4-пути (эритрозо-4-фосфат, рибозо-5-фосфат, триозы, гексозы и др.) включаются в синтез липидов, циклических соединений, нуклеотидов, органических кислот, аминокислот и других органических соединений. Часть этих веществ используется самими хлоропластами для построения липопротеидных мембранных структур, пигментов, компонентов ЭТЦ, а также коферментов и ферментов, катализирующих весь комплекс фотосинтетических реакций.

Содержание

1.ФОТОСИНТЕЗ КАК ОСНОВА ПРОДУКТИВНОСТИ РАСТЕНИЙ
2.ДОНОРНО-АКЦЕПТОРНЫЕ ВЗАИМОДЕЙСТВИЯ КАК ФАКТОР ЭНДОГЕННОЙ РЕГУЛЯЦИИ ФОТОСИНТЕЗА В СИСТЕМЕ ЦЕЛОГО РАСТЕНИЯ
3.ТЕОРИЯ ФОТОСИНТЕТИЧЕСКОЙ ПРОДУКТИВНОСТИ
4.ФОТОСИНТЕЗ, РОСТ И ПРОДУКТИВНОСТЬ РАСТЕНИЙ
5.ПОКАЗАТЕЛИ ФОТОСИНТЕЗА И ПРОДУКТИВНОСТИ И ИХ ИЗМЕНЧИВОСТЬ
6.КАЧЕСТВЕННЫЙ СОСТАВ ОБРАЗУЮЩИХСЯ В ХОДЕ ФОТОСИНТЕЗА ОРГАНИЧЕСКИХ ВЕЩЕСТВ И ЕГО ЗАВИСИМОСТЬ ОТ УСЛОВИЙ ОСУЩЕСТВЛЕНИЯ ФОТОСИНТЕЗА
7.ДОНОРНО-АКЦЕПТОРНЫЕ ОТНОШЕНИЯ МЕЖДУ ФОТОСИНТЕЗИРУЮЩИМИ И ПОТРЕБЛЯЮЩИМИ АССИМИЛЯТЫ ОРГАНАМИ
8.ЛИТЕРАТУРА

Вложенные файлы: 1 файл

Фотосинтез как основа продуктивности растений..doc

Другой путь преодоления отрицательного влияния низкой концентрации углекислого газа в атмосфере на урожай — распространение таких форм растений, которые очень интенсивно фотосинтезируют даже при ничтожно малом его содержании. Это — С4 — растения. У них рекордные показатели интенсивности фотосинтеза.

Распространение таких растений, дальнейшее изучение особенностей их фотосинтеза представляется весьма нужным и перспективным.

Растительность земного шара довольно неэффективно использует солнечную энергию. Коэффициент полезного действия у большинства дикорастущих растений составляет всего 0,2 процента, у культурных он равен в среднем одному проценту. При оптимальном снабжении культурных растений водой, минеральными солями коэффициент полезного использования света повышается до четырех — шести процентов. Теоретически же возможен КПД, равный восьми — десяти процентам. Сопоставление приведенных цифр говорит о больших возможностях в увеличении фотосинтетической продуктивности растений. Однако практическая их реализация встречает большие трудности.

Повысить эффективность использования солнечной энергии в ходе фотосинтеза можно, расположив растения на оптимальном расстоянии друг от друга. В изреженных посевах значительная часть света пропадет зря, а вот в загущенных растения затеняют друг друга, их стебли становятся длинными и ломкими, легко полегающими от дождя и ветра. В том и другом случае происходит снижение урожая. Вот почему очень важно выбрать для каждой культуры наиболее оптимальное расстояние. При этом следует учитывать, что оптимальная плотность посевов может быть различной в зависимости от обеспеченности растений водой, элементами минерального питания и от их особенностей. К сожалению, многие агрономы не принимают во внимание названные факторы, поэтому так медленно растет продуктивность наших полей. Наиболее часто растения неэффективно фотосинтезируют из-за недостатка воды и элементов минерального питания. Если улучшить условия водоснабжения и питания, то размеры листовой поверхности увеличатся, а между ними и величиной урожая обычно существует прямая зависимость.

Однако существует некоторый предел роста эффективности фотосинтеза, когда дальнейшее улучшение водоснабжения и минерального питания не дает результатов. Дело в том, что при определенном размере листовой поверхности (обычно когда на 1 квадратный метр посевов приходится четыре-пять квадратных метров листьев) растения поглощают практически всю энергию света. Если же на единицу площади поля приходится еще большая поверхность листьев, то в результате затенения их друг другом растения вытянутся, интенсивность фотосинтеза уменыпит-ся. Вот почему дальнейшее улучшение снабжения растений водой и элементами минерального питания неэффективно.

В чем же выход из создавшегося положения? Ученые полагают, что в выведении новых сортов культурных растений, отличающихся выгодным строением тела. В частности, они должны иметь компактную низкорослую крону, с вертикально ориентированными листьями, обладать крупными запасающими (луковицы, клубни, корни, корневища) и репродуктивными (семена, плоды) органами.

На повышение плодородия почвы и улучшение водоснабжения эти сорта будут реагировать усилением интенсивности фотосинтеза, умеренным потреблением продуктов фотосинтеза (ассимилятов); на рост листьев и других вегетативных органов, а также активным использованием ассимилятов на формирование репродуктивных и запасающих органов.

Вот какие жесткие требования предъявляются теперь к науке, занимающейся выведением новых сортов культурных растений, — селекции. Из сказанного ясно, что без тесного сотрудничества селекционеров с физиологами растений создание перспективных сортов становится практически невозможным.

Селекционеры вывели сорта, отвечающие современным требованиям. Среди них — низкорослый рис, созданный в Международном институте риса в Маниле, хлопчатник Дуплекс, с вертикально ориентированными листьями, не затеняющими друг друга, карликовая пшеница мексиканской селекции. Эти сорта на фонах высокого плодородия дают в полтора раза более высокие урожаи, чем их предшественники. Однако это лишь один из путей увеличения фотосинтетической продуктивности растений. Дальнейшие усилия должны быть направлены на повышение активности самого фотосинтетического аппарата.

Как известно, процесс фотосинтеза осуществляется в особых органоидах — хлороплас-тах. Здесь происходит множество реакций, прежде чем из углекислого газа и воды образуются молекулы органических веществ. Управлять этими процессами, безусловно, непросто, но возможно. Об этом свидетельствует тот факт, что интенсивность фотосинтеза у разных растений неодинакова. У одних листовая поверхность площадью в 1 квадратный дециметр усваивает за час от четырех до семи миллиграммов СОг, а у других — 60— 80 и даже 100, то есть в 20 раз больше! Растения неодинаково реагируют на его низкую концентрацию в воздухе, интенсивность освещения и т. д.

Изучение особенностей фотосинтеза у разных растений, безусловно, будет способствовать расширению возможностей человека в управлении их фотосинтетической деятельностью, продуктивностью и урожаем.

4.ФОТОСИНТЕЗ, РОСТ И ПРОДУКТИВНОСТЬ РАСТЕНИЙ

Взаимоотношения роста растений и интенсивности фотосинтеза отражают непрерывную перестройку фотосинтетического аппарата в ходе онтогенеза и динамику формирования и активности растущих (аттрагирующих) органов, потребляющих ассимиляты. Начальный этап развития листа осуществляется за счет деления и роста клеток, а затем — лишь путем растяжения. За это время делятся и развиваются хлоропласты, число которых увеличивается, пока растет объем клетки. В клетках губчатой ткани пластид образуется в 1,5-2,0 раза меньше (у картофеля около 70), чем в пали-садной (200—300 органоидов). Новообразование хлоропластов завершается довольно рано, но рост клеток опережает увеличение числа хлоропластов, в результате чего в онтогенезе листа их количество в 1 см 2 убывает вдвое. Однако содержание хлорофилла в хлоропласте продолжает увеличиваться и после достижения хлоропластом наибольшей величины. Максимальная интенсивность фотосинтеза наблюдается во время роста клеток листа растяжением и начинает несколько снижаться, когда площадь листа составляет 0,4—0,8 от конечной. Затем процесс фотосинтеза может уменьшаться с возрастом листа или не меняется длительное время (особенно у вечнозеленых растений).

Такого рода смена функций листа в онтогенезе важна при формировании урожая. Потребление ассимйлятов молодым листом приводит к построению добавочного фотосинтетического аппарата, чем обеспечивается увеличение фотосинтетической активности в геометрической прогрессии. Следует отметить также, что в онтогенезе изменяется соотношение путей фотосинтетического метаболизма. В условиях, когда внешние факторы не лимитируют скорость фотосинтеза, этот процесс целиком детерминируется ростовой функцией (А. Т. Мок-роносов, 1981).

Современные знания о процессе фотосинтеза как на уровне растения, так и фитоценоза, позволяют видеть основные направления оптимизации фотосинтеза и увеличения продуктивности растений. Наиболее полно вопросы фотосинтетической деятельности растений в посевах, связанной с образованием хозяйственного урожая (используемого человеком), его доли в биологическом урожае (т. е. суммарной массе всех органов растения), освещены в работах А. А. Ничипоровича. фотосинтеза и продуктивности легко заметить, что первые отражают функцию поверхности растения, листа, клетки, а вторые связаны с нарастанием объема, массы растения. Для первых большое значение имеет диффузия СО2 в лист, в хлоропласт. Это способствовало появлению целого направления исследований по выяснению путей и закономерностей диффузии СО2 к местам его связывания. Было установлено, что углекислота играет роль не только главного субстрата (источника поглощенного углерода) в процессе фотосинтеза, но и стимулятора фотохимических процессов в хлоропластах. Поэтому с повышением концентрации СО2 фотосинтез и продуктивность растения могут повышаться даже при уменьшении освещенности. При форсировании продуктивности (на генетическом или фенотипическом уровнях) растение обычно выбирает путь экстенсивный, то есть наращивает дополнительно листовую поверхность с большим содержанием хлорофилла, эффективность которого при этом падает.

В поиске путей согласования интенсивности фотосинтеза и хозяйственной продуктивности большие надежды возлагались на выяснение вклада в фотосинтез целого растения не только листьев, но и других содержащих хлорофилл органов. Общеизвестно, что хлорофилл содержат не только листья, но и нелистовые органы (стебли, колосья, части цветков, плоды). Действительно, исследования показали, что вклад этих органов в фотосинтез целого растения у некоторых растений в определенные периоды может даже превышать вклад фотосинтеза листьев. Были установлены функциональные особенности разных ассимилирующих органов. Оказалось, что фотосинтез нелистовых органов менее подавляется в условиях засухи. Но и это не объясняло отсутствия корреляции интенсивности фотосинтеза с хозяйственной продуктивностью растений.

6.КАЧЕСТВЕННЫЙ СОСТАВ ОБРАЗУЮЩИХСЯ В ХОДЕ ФОТОСИНТЕЗА ОРГАНИЧЕСКИХ ВЕЩЕСТВ И ЕГО ЗАВИСИМОСТЬ ОТ УСЛОВИЙ ОСУЩЕСТВЛЕНИЯ ФОТОСИНТЕЗА

Уже самые первые опыты с меченым углеродом, когда еще не были известны механизмы усвоения углекислоты, показали, что в ходе фотосинтеза быстро образуется широкий набор самых разнообразных соединений. Это сахара, аминокислоты, органические кислоты, белки и вещества липидной природы. Было установлено, что при смене условий существования растения соотношение углеводной и неуглеводной составляющей продуктов фотосинтеза сильно изменяется. И.А. Тарчевский ввел даже специальный термин "неспецифическая ответная реакция" ФСА на действие различных факторов [3]. В общих чертах суть ее заключалась в том, что на любое неблагоприятное воздействие процесс усвоения СО2 реагировал снижением образования сахарозы (основного транспортного продукта фотосинтеза) и относительным усилением образования аминокислот и органических кислот. Причем только что усвоенный углерод углекислоты оказывался в соединениях, участвующих в процессах дыхания. Была высказана идея, что в неблагоприятных условиях происходит прямое замыкание фотосинтеза на дыхание и образовавшиеся продукты фотосинтеза окисляются (сжигаются) в дыхании до аминокислот, снижая продуктивность.

Оглянитесь вокруг! Пожалуй, в каждом доме есть хотя бы одно зеленое растение, а за окном несколько деревьев или кустарников. Благодаря сложному химическом процессу происходящего в них фотосинтеза стало возможно зарождение жизни на Земле и существование человека. Разберем историю его открытия, суть процесса и реакции, которые протекают в разных фазах.

История открытия фотосинтеза

В настоящее время школьники впервые знакомятся со сложными процессами фотосинтеза уже в 6 классе.

Первым и очевидным ответом было предположение, что из земли. Однако, в далеком 1600 году фламандский ученый Ян Батист ван Гельмонт решил проверить влияние почвы на рост растений и провел уникальный в своей простоте опыт. Естествоиспытатель взял веточку ивы и бочку с почвой. Предварительно их взвесил. А затем посадил отросток ивы в бочку с почвой.

Долгие пять лет ван Гельмонт поливал молодое деревце лишь дождевой водой. А через пять лет выкопал деревце, и вновь взвесил отдельно деревце и отдельно почву. Каково же было его удивление, когда весы показали, что деревце увеличило свой вес практически в тридцать раз, и совсем не походило на тот скромный прутик, что был посажен в кадку. А вес почвы уменьшился всего на 56 граммов.

Ученый сделал вывод. что почва практически не дает строительного материала растениям, а все необходимые вещества растение получает из воды.

Одним из тех, кто попытался возразить этой теории был М.В. Ломоносов. И строил он свои возражения на том, что на пустых, скудных северных землях с редкими дождями растут высокие, мощные деревья. Михаил Васильевич предположил, что часть питательных веществ растения впитывают через листья, но доказать свою теорию экспериментально он не смог.

И как часто бывает в науке, помог его величество случай.

Однажды нерадивая мышь, решившая поживиться церковными запасами, случайно перевернула банку и оказалась в ловушке. И через некоторое время погибла. К нашей удаче, эту мышь в банке обнаружил Джозеф Пристли, который был не просто священником, а по совместительству ученым-химиком, и очень интересовался химией газов и способами очистки испорченного воздуха. И тут церковным мышам не повезло. Они стали участницами различных опытов английского ученого.

Джозеф Пристли ставил под одну банку горящую свечу, а в другую сажал мышь. Свеча тухла, грызун погибал.

В наше время его самого зоозащитники посадили бы в банку, но в далеком 1771 году ученому никто не помешал продолжить свои опыты. Пристли посадил мышь в банку, где до этого потухла свеча. Животное погибло еще быстрее.

И тогда Пристли сделал вывод, что раз все живое на Земле до сих пор не погибло, Бог (мы же помним, что Пристли был священником), придумал некий процесс, чтобы воздух вновь был пригоден для жизни. И скорее всего, основная роль в нем принадлежит растениям.

Чтобы доказать это, ученый взял воздух из банки где погибла мышь, и разделил его на две части. В одну банку он поставил мяту в горшочке. А другая банка ждала своего часа. Через 8 дней растение не только не погибло, а даже выпустило несколько новых побегов. И он опять посадил грызунов в банки. В той, где росла мята — мышь была бодра и закусывала листиками. А в той, где мяты не было — практически моментально лежала дохлая мышиная тушка.

Рисунок 1

Опыты Пристли вдохновили ученых, и во всем мире начали отлавливать мелких грызунов и пытаться повторить его эксперименты.

Но мы же помним, что Пристли был священником и весь день, до вечерней службы мог заниматься исследованиями.

А Карл Шееле, аптекарь из Швейцарии, экспериментировал в домашней лаборатории в свободное от работы время, т.е. по ночам, и мыши дохли у него независимо от присутствия мяты в банке. В результате его экспериментов получалось, что растения не улучшают воздух, а делают его непригодным для жизни. И Шееле обвинил Пристли в обмане научной общественности. Пристли не уступил, и в результате противостояния ученых было установлено, что для восстановления воздуха растениям необходим солнечный свет.

Именно эти опыты положили начало изучению фотосинтеза.

Исследование фотосинтеза стремительно продолжалось. Уже в 1782 году, спустя всего лишь 11 лет после исследований Пристли, швейцарский ботаник Жан Сенебье доказал, что органоиды растений разлагают углекислый газ в присутствии солнечного света. И практически еще сто лет провальных и удачных экспериментов понадобилась ученым разных специальностей, чтобы в 1864 году немецкий ученый Юлиус Сакс смог доказать, что растения потребляют углекислый газ и выделяют кислород в соотношении 1:1.

Биология. 6 класс. Рабочая тетрадь №1.

Значение фотосинтеза для жизни на Земле

И теперь становится понятна важность процесса фотосинтеза для жизни на земле. Именно благодаря этому сложному химическом процессу стало возможно зарождение жизни на земле и существование человека.

Кто-то может возразить, что на Земле есть места, где не растут ни деревья ни кустарники, например, пустыни или Арктические льды. Ученые доказали, что доля кислорода, выделяемого зеленой массой лесов, кустарников и трав — т. е. растений, что обитают на поверхности суши, составляет всего около 20% газообмена, а 80% кислорода приходится на мельчайшие морские и океанские водоросли, которые потоками воздуха переносятся по всей планете, позволяя дышать животным в экстремальных, практически лишенных растительности регионах нашей удивительной планеты.

Благодаря фотосинтезу вокруг нашей планеты сформировался защитный озоновый экран, защищающий все живое на земле от космической и солнечной радиации, и живые организмы смогли выйти на сушу из глубин океана.

К сожалению, в настоящее время кислород потребляют не только живые существа, но и промышленность. Уничтожаются тропические леса, загрязняются океаны, что приводит к снижению газообмена и увеличению дефицита кислорода.

Определение и формула фотосинтеза

Определение и формула фотосинтеза

Схема фотосинтеза, на первый взгляд, проста:

Вода + квант света + углекислый газ → кислород + углевод

или (на языке формул):

Если копнуть поглубже и посмотреть на лист в электронный микроскоп, выяснится удивительная вещь: вода и углекислый газ ни в одной из структурных частей листа непосредственно друг с другом не взаимодействуют.

Фазы фотосинтеза

К фотосинтезу способны не только растения, но и многие одноклеточные животные благодаря специальным органоидам, которые называются хлоропласты.

Хлоропласты — это пластиды зеленого цвета фотосинтезирующих эукариот. В состав хлоропластов входят:

  1. две мембраны;
  2. стопки гранов;
  3. диски тилакоидов;
  4. строма — внутреннее вещество хлоропласта;
  5. люмен — внутреннее вещество тилакоида.

Сложный процесс фотосинтеза состоит из двух фаз: световой и темновой. Как понятно из названия, световая (светозависимая) фаза происходит с участием квантов света. Название темновая фаза вовсе не означает, что процесс происходит в темноте. Более точное определение — светонезависимая. Т.е. для реакций, происходящих в этой этой фазе, свет не нужен, а протекает она одновременно со световой, только в других отделах хлоропласта.

Многие делают ошибку, говоря, что в процессе фотосинтеза происходит производство растениями такого необходимого человечеству кислорода. На самом деле фотосинтез — это синтез углеводов (например, глюкозы), а кислород — лишь побочный продукт реакции.

Световая фаза фотосинтеза

Световая фаза фотосинтеза происходит на мембранах тилакоидов. Фотон света, попадая на хлорофилл, возбуждает его и происходит выделение электронов и скопление отрицательно заряженных электронов на мембране. После того, как хлорофилл потерял все свои электроны, квант света продолжает воздействовать на воду, вызывая фотолиз Н2О.

Положительно заряженные протоны водорода накапливаются на внутренней мембране тилакоида.

Получается такой бутерброд: с одной стороны отрицательно заряженные электроны хлорофилла, с другой – положительно заряженные протоны водорода, а между ними – внутренняя мембрана тилакоида.

Гидроксильные ионы идут на производство кислорода:

Когда количество протонов водорода и электронов достигает максимума, запускается специальный переносчик — АТФ-синтаза. АТФ-синтаза выталкивает протоны водорода в строму, где их подхватывает специальный переносчик никотинамиддинуклеотидфосфат или сокращенно НАДФ. НАДФ — специфический переносчик протонов водорода в реакциях углеводов.

Прохождение протонов водорода через АТФ-синтазу сопровождается синтезом молекул АТФ из АДФ и фосфата или фотофосфорилированием, в отличие от окислительного фосфорилирования.

На этом световая фаза фотосинтеза заканчивается, а НАДФН+ и АТФ переходят в темновую фазу.

Повторим ключевые процессы световой фазы фотосинтеза:

  1. Фотон попадает на хлорофилл с выделением электронов.
  2. Фотолиз воды.
  3. Выделение кислорода.
  4. Накопление НАДФН+.
  5. Накопление АТФ.

Огромную роль играет процесс фотосинтеза в на­коплении урожая. Основная задача сельского хозяйства — накопление на­ибольшей массы урожая — зависит главным образом от этого процесса. Без достаточного количества углеводов не может интенсивно ид­ти дыхание, а без него не идет и поступление питательных веществ в расте­ние. Таким образом, в конечном итоге процесс фотосинтеза обусловливает накопление урожая. В то же время коэффициент использования солнечной энергии у растений очень низок.

Как же поднять этот коэффициент использования солнечной энергии растением?


Исследованиями А.А. Ничипоровича (1966) и А.Я. Бакалдина (1973) установлено, что урожай сухого вещества сельскохозяйственных культур на 80–90 % создается в результате фотосинтеза, который, в первую очередь, зависит от размеров ассимиляционной поверхности, высоты и густоты стояния растений и ряда других факторов. Все остальные процессы питания растений, в частности водное и минеральное, эффективны в той степени, когда они обеспечивают и поддерживают оптимальную деятельность фотосинтетического аппарата.

Нарастание сухой массы считается одним из главных показателей фотосинтетической деятельности растений. Суточный прирост сухого вещества значительно изменяется и может достигать до 300 кг/га в период интенсивного роста растений (А.А. Ничипорович и др., 1961).

Потенциальная биологическая продуктивность полевых культур зависит от величины поступающей к ним солнечной энергии и от особенностей её расхода. Помимо продуцирования кислорода, фотосинтез приобретает всё большее значение как основа воспроизводства продовольствия. Поэтому, создавая искусственные ценозы на полях, человек при помощи агротехники и лучистой энергии солнца обеспечивает себя продуктами питания. Первичные продукты фотосинтеза, участвуя в реакции вторичного метаболизма, образуют весь спектр органических соединений растительной клетки (А.Т. Мокроносов, В.Ф. Гавриленко, Т.В. Жигалова, 2006).

Высокая продуктивность сельскохозяйственных культур определяется динамически оптимальным соотношением отдельных элементов фотосинтеза. К основным из них относят: размер ассимиляционного аппарата, фотосинтетический потенциал, интенсивность и продуктивность фотосинтеза (Т.М. Русакова, 1974; J.M. Anderson, 1983; В.М. Важов, 2012).

Известно, что годовая масса органического вещества, создаваемого фотосинтезом, с избытком перекрывает то количество продовольствия, которое необходимо населению планеты. Поэтому одним из путей повышения эффективности земледелия является создание посевов с хорошей структурой пространственного расположения листьев.

Листовая поверхность является главным рабочим органом зелёных растений, а размер урожая почти полностью определяется её величиной. Нарастание листовой поверхности и величина ассимиляционного аппарата культурных растений зависит от агротехнических условий (А.Н. Бегишев,1953; Vong Hguyen Quoc, Murata Yoshio, 1978) .

По вопросу об оптимальной площади листовой поверхности сельскохозяйственных культур нет единого мнения. А.А. Ничипорович (1959) считает, что листовая поверхность должна составлять до 50 тыс. м2/га, а по мнению А.Н. Бегишева (1953) этот показатель равен примерно 100 тыс. м2/га.

В исследованиях А.Д. Гончарова (2008) в Новосибирской области бороздковые посевы формировали лучшую листовую поверхность гречихи, чем сплошные. С возрастом растений преимущество бороздковых посевов было очевидным. В фазу бутонизации площадь листьев на 1 га бороздковых посевов была больше рядовых на 14,5 %, а в фазу цветения – на 37,4 %. В изменении площади листьев по годам исследований каких-либо закономерностей не отмечено как по каждому способу возделывания, так и по сравнению их между собой. В различиях между изучаемыми способами посева по другим показателям фотосинтетической деятельности гречихи и их динамики в течение вегетационного периода в опытах А.Д. Гончарова (2008) проявились те же закономерности, что и в случае с площадью листьев. Так, фотосинтетический потенциал бороздковых посевов был больше соответствующего показателя сплошных посевов на 15 % за период бутонизация-цветение и на 30 % – за время цветение-созревание.

По мнению Н.Д. Кумсковой (2004), в условиях Дальнего Востока на листовую поверхность гречихи влияют сроки сева. В её опытах посевы 5 и 30 июня имели площадь листьев 22,5 и 23,5 тыс. м2 на 1 га, тогда как посевы 20 и 25 июня, соответственно, 32 и 31 тыс. м2. Гречиха давала хорошую вегетативную массу и высокие показатели фотосинтеза. В опыте Н.Д. Кумсковой (2004) при посеве с 5 по 30 июня получено от 25,1 до 37,3 т/га зелёной массы, максимальной она была при сроке сева 20 июня (табл. 56).

Фотосинтетическая деятельность и урожайность вегетативной массы гречихи
на разных сроках сева (по Н.Д. Кумсковой, 2004)

Площадь листьев (тыс. м2/га)

Зеленая масса, т/га

Сухая масса, т/га

Примечание. ЧПФ – чистая продуктивность фотосинтеза за вегетацию, г/м2/сут.

По мнению Н.Д. Кумсковой (2004), влияние удобрений на площадь листьев, продуктивность фотосинтеза, прирост сухого вещества гречихи значительное (рис. 61).

Прирост зелёной и сухой массы гречихи находился в тесной зависимости от удобрений. На вариантах без их применения и при внесении азота прирост зелёной массы продолжался до уборки, что важно при выращивании гречихи на зелёное удобрение. Внесение фосфора, совместно с комплексным удобрением, обеспечивало накопление биомассы на 1–2-е декады раньше (табл. 57).

_61.tif

Рис. 61. Влияние удобрений на рост площади листьев, продуктивность фотосинтеза, прирост сухого вещества гречихи по декадам (по Н.Д. Кумсковой, 2004)

Динамика нарастания зелёной и сухой массы гречихи в зависимости от удобрений (по Н.Д. Кумсковой, 2004), т/га

Удобрения, в зависимости от влажности почвы, по-разному влияли на формирование листовой поверхности гречихи (Н.Д. Кумскова, 2004). При выпадении большого количества осадков в начальный период вегетации на варианте с азотом формировалась низкая площадь листьев – 21,7 тыс. м2 на 1 га. На делянках, удобренных только фосфором и при совместном внесении азота, фосфора и калия листовая поверхность была больше на 19,3 и 25,1 тыс. м2 на 1 га, по сравнению с вариантом N40, и на 8,4 и 14,2 тыс. м2 – по отношению к контролю.

Существенно изменялась листовая поверхность в зависимости от густоты посева (Н.Д. Кумскова, 2004). С увеличением нормы высева с 2 до 5 млн. всх. зёрен на 1 га площадь листьев на одном растении снизилась с 175 до 104 см2, а на 1 га увеличилась с 26 до 57 тыс. м2.

Т.М. Русакова (1974) также считает, что площадь листьев гречихи на высоком агрофоне может превышать показатели контроля в 2,0–2,5 раза.

С.У. Броваренко (1970), на основании многолетних исследований в Западной Сибири, пришёл к выводу о том, что лучшее развитие ассимиляционной поверхности листьев гречихи происходит на узкорядных посевах, в сравнении с широкорядными. Площадь листьев на узкорядных посевах достигает 44,4 тыс. м2 на 1 га, на рядовых – 29,8, а на широкорядных – только 19,6 тыс. м2 на 1 га, соответственно, и урожайность на последних ниже. Можно высказать предположение, что урожайность на широкорядных посевах снижалась из-за угнетения культурных растений сорняками, так как известно, что рядовые, и особенно узкорядные посевы, успешно противодействуют засорённости.

С.И. Рак (1967) также считает, что площадь листьев гречихи при рядовом способе посева примерно в 1,5 раза больше в сравнении с листовой поверхностью на междурядьях 0,45 м.

По мнению К.А. Савицкого (1970), большое производственное значение имеют широкорядные посевы гречихи. На чистых от сорняков почвах они эффективнее сплошных рядовых. Листовая поверхность на широкорядном посеве в 1,3–1,4 раза больше, чем на сплошном. Это способствует повышению продуктивности фотосинтеза у растений широкорядного посева в фазе плодообразования в 1,5–1,9 раза.

Наши наблюдения подтверждают данные результаты. В зависимости от ширины междурядий площадь листьев возрастает в 1,4 раза в пользу разреженного посева, увеличение нормы высева также способствует росту ассимиляционной поверхности примерно в 1,5 раза.

Преимущество узкорядного способа посева перед обычным рядовым и широкорядным можно объяснить более слабым ростом, развитием и ветвлением растений в разреженных посевах, что наблюдается при наличии сорняков в междурядьях.

Гречиха интенсивно формирует листья в фазу всходов и бутонизации, к началу цветения их доля составляет 30–50 % от всей биомассы (Г.В. Копелькиевский, 1963). Способы посева и нормы высева значительно влияют на формирование площади листьев. Так, к периоду начала плодообразования размер листовой поверхности быстро увеличивается, но затем скорость данного процесса снижается.

Наши наблюдения показали, что в условиях лесостепи Алтайского края площадь листьев гречихи в фазу плодообразования составляет 48,9–69,8 тыс. м2/га (табл. 58).

Площадь листьев и продуктивность фотосинтеза посевов гречихи
(средняя за 2010–2011 гг.)

Норма высева, млн. всх. зёрен на 1 га

площадь листьев, тыс. м2/га

площадь листьев, тыс. м2/га

площадь листьев, тыс. м2/га

Широкоряд-ный (0,45 м)

Широкоряд-ный (0,60 м)

В связи с тем, что по урожайности зерна гречихи широкорядные посевы 0,60 м уступают таковым с междурядьями 0,45 м, можно предположить, что солнечная радиация и питательные вещества в разреженных посевах используются на создание вегетативной массы, а не зерна.

Таким образом, создавать оптимальную площадь листьев гречихи можно различными технологическими приёмами. Подбор лучших агротехнических условий, обеспечивающих оптимальное развитие листовой поверхности, имеет важное практическое значение.

Главным показателем фотосинтетической деятельности растений является чистая продуктивность фотосинтеза. Связь её с урожаем самая непосредственная и при равенстве площади листьев урожай сухой биомассы растений прямо пропорционален чистой продуктивности фотосинтеза (Т.М. Русакова, 1974; Schilling Herbert, 1980; J.H. Golbeck, 1992).

Продуктивность фотосинтеза гречихи не остается постоянной в течение всего периода вегетации. Наибольшую величину она имеет в период бутонизации-цветения, то есть в период наибольшего прироста сухой массы растений (Т.М. Русакова, 1974). Чистая продуктивность фотосинтеза следует за уровнем минерального питания: наиболее высокие показатели её наблюдаются у растений на чернозёмной почве с внесением минеральных удобрений (7,44 г/м2 в сут. в среднем за вегетацию).

Внесение минеральных удобрений в опытах Т.М. Русаковой (1974) довольно результативно отразилось на величине чистой продуктивности фотосинтеза. Это можно объяснить тем, что хорошее минеральное и, прежде всего, азотное питание активизирует фотосинтез деятельных, хорошо освещённых листьев верхних и средних ярусов, которые в сильной степени поддерживают активную жизнедеятельность листьев нижних ярусов. Последние, в условиях ослабленного света и затруднённого минерального питания, обычно быстро стареют и отмирают. Очевидно, поэтому на высоких фонах минерального питания образуются растения с большой площадью листьев и с высокими показателями чистой продуктивности фотосинтеза.

Анализ результатов определения чистой продуктивности фотосинтеза гречихи в условиях Новосибирской области говорит о том, что изменение этого показателя во времени и по способам возделывания культуры происходит по аналогии с изменением площади листьев и фотосинтетического потенциала. При этом, независимо от способа возделывания, чистая продуктивность фотосинтеза всегда была выше в благоприятные по увлажнению годы (А.Д. Гончаров, 2008).

По мнению Н.М. Городнего (1980), гречиха имеет лучшую, чем многие культуры способность к синтезу органических кислот (в мг на 1 г сухого вещества растения): гречиха – 7,01; нут – 5,08; люпин синий – 4,60; горчица – 4,55; горох – 3,02; овес – 2,88; кукуруза – 1,38. Всё это позволяет считать гречиху нетребовательной к почвам и приводит к тому, что её часто высевают на малоплодородной почве, где другие культуры почти не дают урожая.

По подсчетам А.А. Ничипоровича (1959, 1966), посевы культурных растений в процессе фотосинтеза способны образовывать до 8–10 г сухой биомассы на 1 м2 листовой поверхности, а потенциальная продуктивность может достигать 20–40 г/м2
в сутки. Этот показатель зависит от освещённости солнцем, притока питательных веществ и воды.

Гречиха имеет много точек роста, которые потребляют большое количество продуктов ассимиляции. Ассимиляция проходит при фотосинтезе, который напрямую зависит от величины листовой поверхности и интенсивности солнечного освещения. Величина листовой поверхности гречихи по отношению к количеству цветков на растении составляет всего 0,30–0,56 см2 на один цветок. Эта площадь слишком мала для полного обеспечения цветка пластическими веществами. Если период быстрого роста побегов совпадает со временем развития цветков и плодов, то при недостатке продуктов ассимиляции растущие верхушки стеблей и ветвей оказываются обеспеченными пищей лучше, чем большая часть репродуктивных органов (Н.М. Городний, 1980; J. Oppereer, 1985; S. Wojcik, 1991).

Листья гречихи не обладают высокой энергией усвоения углекислоты. При высокой температуре днём, даже при достаточной влагообеспеченности растений, листья подвядают. Фотосинтез ухудшается из-за быстрого роста вегетативных органов. В результате листья нижнего яруса сильно затеняются и освещаются рассеянным светом, существенно потерявшим физиологически активные лучи. Это снижает образование пластических питательных веществ, недостаток которых вызывает отмирание цветков и завязей (Vong Hguyen Quoc, 1977; И.Н. Елагин, 1984).

Гречиха – светолюбивое растение. Чем лучше освещены её листья, тем энергичнее и больше она усваивает из воздуха углекислоту, перерабатывает её в легкоусвояемые питательные вещества.

В условиях почвенной засухи рост гречихи прекращается, но развитие её продолжается, причем происходит оно быстрее, чем в нормальных условиях. В результате образуются карликовые растения, которые быстро отцветают и созревают, а урожай зерна резко снижается (Н.М. Городний, 1980).

По мнению М.Н. Городнего (1980), на загущенных посевах верхний ярус листьев гречихи поглощает только 60–70 % солнечной радиации. Средний и нижний ярусы получают третью часть и меньше общей энергии солнечного света. В среднем ярусе широкорядного посева проникающая радиация составляет 60–80 % общей падающей, а в нижнем – 50–70 %. Разреженный посев лучше использует световой режим для процессов фотосинтеза, по сравнению с загущенным.

Известно, что при затенении нижних ярусов листьев растений чистая продуктивность фотосинтеза начинает уменьшаться. Лучший по количеству и качеству урожай зерна гречихи можно получить только в посевах, обладающих достаточной по размерам площадью листьев – 40–45 тыс. м2/га при оптимальном ходе её наращивания (М.Н. Городний, 1980). В наших исследованиях лучшей ассимилирующей поверхностью гречихи был показатель на уровне 56,7 тыс. м2/га. Расчёты говорят о том, что в процессе фотосинтеза гречиха может формировать за сутки до 7,34 г сухой биомассы на 1 м2 листовой поверхности. При этом лучшие показатели урожайности отмечались при среднесуточной продуктивности фотосинтеза – 5,83 г сухой биомассы на 1 м2.

Таким образом, сравнение показателей ассимиляционной поверхности и фотосинтетической деятельности растений гречихи между вариантами, позволяет сделать вывод о том, что способы посева и нормы высева оказывают определяющее влияние на урожай зерна. Эти агротехнические приёмы можно отнести к наиболее результативным.

Фотосинтетический потенциал посевов гречихи является обобщающим показателем воздействия многих агротехнических факторов, в том числе способа посева и нормы высева. Н.Д. Кумскова (2004) считает, что фотосинтетический потенциал гречихи может составлять от 1,076 до 1,439 млн. м2 дней /га в зависимости от вносимых удобрений.

По мнению Н.М. Городнего (1980), основная причина отмирания большей части репродуктивных органов гречихи заключается в слабом снабжении их пластическими веществами. Невысокая озернённость гречихи обусловлена неудовлетворительным питанием её цветков из-за низкой облиственности растения и одновременного развития вегетативных и генеративных частей. Продукты синтеза перемещаются в растениях к тем органам, где они потребляются, и в том количестве, в котором они используются. Чем активнее жизнедеятельность организма и чем он мощнее, тем большее количество продуктов ассимиляции поступает в растение. Если образуется много растущих органов и общая потребность их в органическом веществе превысит синтетическую деятельность ассимиляционного аппарата растения, у такого растения наблюдается недостаток продуктов ассимиляции и его растущие части голодают. При этом больше страдают органы, которые растут менее интенсивно, в которые органические вещества поступают слабее. Их рост приостанавливается, но если недостаток питания длителен или даже постоянен, растения гибнут.

Бороздковые посевы гречихи в условиях Новосибирской области, в сравнении со сплошными рядовыми, формировали более значительный фотосинтетический потенциал. При этом преимущество бороздковых посевов по данному показателю последовательно нарастало от ранних периодов роста и развития растений, к более поздним. В среднем за 3 года исследований А.Д. Гончарова (2008), за период всходы-бутонизация, фотосинтетический потенциал бороздковых посевов был больше соответствующего показателя сплошных рядовых на 15 %, а за период бутонизация-цветение – на 28 %, за период цветение-созревание – на 30 %.

В опытах Н.Д. Кумсковой (2004) высокая облиственность растений и урожайность гречихи отмечены на посевах нормой 3 млн. всх. зёрен на 1 га. При высеве 2 млн. семян снижался выход зерна из-за недостаточной густоты стояния растений, что приводило к неэффективному использованию пашни. Нормы высева 4 и 5 млн. зёрен нерациональны, так как в таких посевах формировалась избыточная вегетативная масса. Наиболее высокая масса листьев гречихи, по отношению к массе растений (облиственность), наблюдалась в фазу бутонизации. Затем облиственность растений гречихи к началу цветения снижалась в два раза, достигала минимального значения в фазу созревания. На делянках, удобренных азотом, снижение её было более интенсивным, чем на контроле и других фонах. В этом варианте облиственность к моменту созревания равнялась 13,3 %, вместо 18,6 % на контроле.

Полученные нами данные для лесостепной зоны Алтайского края не противоречат результатам исследований Н.Д. Кумсковой (2004).

Наши наблюдения говорят о том, что максимального значения фотосинтетический потенциал достигал в разреженном травостое в фазу плодообразования, то есть при широкорядном способе посева (табл. 59).

Фотосинтетический потенциал и облиственность гречихи посевной
(средние за 2010–2011 гг.)

Читайте также: