Цветовая палитра монитора состоит из 8 цветов выберите код белого цвета

Добавил пользователь Alex
Обновлено: 19.09.2024

Вашему вниманию предлагается палитра цветов, рекомендуемых для экранного дизайна.

При создании изображения для публикации в сети главной проблемой является правильная передача цветов на разных типах компьютеров, мониторов и браузеров. Когда браузер не в состоянии правильным образом передать тот или иной цвет, он подбирает похожий или смешивает несколько соседних цветов (dithering). Иногда первоначальный цвет может быть заменен на что-то совершенно неподходящее.

Как пользоваться палитрой

Палитра состоит из 36 сочетаний 6 оттенков красного, зеленого и синего. Эти градации — 0, 51, 102, 153, 204, 255.

Над каждым цветом указаны два значения — RGB (для создания цвета в графическом редакторе) и HEX (для обозначения цвета в HTML).


Этот материал — карманный справочник о том, как работать с цветом в CSS и вебе в целом. Он начинается с теоретических основ и содержит множество инструментов и примеров работы с градиентами, анимацией, SVG и не только.

Статья будет полезна и новичку, и специалисту с опытом. За подробностями приглашаем под кат, пока у нас начинается курс по Frontend-разработке.

Огромная часть работы с цветом — это понимание того, что цвет в мониторах работает не так, как мы привыкли в детстве, когда смешивали краски. К примеру, краска и чернила принтера содержат крошечные частицы, — пигменты, которые смешиваются друг с другом и отражаются, чтобы представить цвет глазу. Так происходит субтрактивное смешивание цветов.

Чем больше цветов вы добавляете к исходному цвету, тем темнее он становится, пока не станет коричневым. Основные цвета принтера близки к привычным красному, жёлтому, синему, но смешивая цвета субтрактивно вы получите коричневый.

С другой стороны, на мониторах мы работаем со светом: когда все цвета смешиваются, они образуют белый цвет.

До знаменитого эксперимента Исаака Ньютона считалось, что цвет содержится в объектах, а не отражается или поглощается ими. Ньютон при помощи призмы доказал теорию о том, что солнечный свет состоит из нескольких цветов. Он разделил цвета призмой — получилась радуга.

Затем Ньютон попытался разделить синий цвет, но синий не разделился. Это означало, что цвет не находится внутри призмы, а, скорее, призма разделяет свет. То есть при аддитивном смешивании цветов в мониторе красный, зелёный и синий цвета могут использоваться, чтобы получить все цвета. При таком смешивании красный и зелёный цвета создают жёлтый.


Мониторы — это множество комбинаций кусочков света. Резонируя, они создают мириады других цветов. Разрешение — это количество отдельных цветных точек, известных как пиксели, которые содержатся на дисплее.

Этот тип живописи был создан на основе убеждения, что оптическое смешение создаёт более чистый резонанс, чем традиционное субтрактивное смешение цветов пигмента.

Количество цветов, которые могут быть отображены одновременно, определяется битовой глубиной цвета. Если битовая глубина равна 1, мы можем получить два цвета, или монохром.

Битовая глубина 2 даст 4 цвета, и так далее, пока мы не достигнем битовой глубины 32, хотя обычно мониторы, отображающие веб-страницы, имеют плотность 24 битовой глубины и 16 777 216 цветов, — это True Color и альфа-канал.

True Color называется так потому, что наши глаза различают 10 000 000 уникальных цветов, а значит, 24-бит, безусловно, позволяет это. В этой 24-битной глубине по 8 бит отводится на красный, зелёный и синий цвета. Остальные используются для прозрачности или альфа-каналов.

Значения цвета

Последний раздел иллюстрирует, что rbga(x, x, x, y); передаёт информацию, но давайте разберём цветовые значения немного подробнее и покажем некоторые другие свойства и их использование. Цвета в канале RGB задаются в диапазоне 0-255.

Hex (шестнадцатеричные цвета)

Шестнадцатеричные цвета — это немного другой формат для представления значений тем же способом. И это, пожалуй, самый распространённый способ обозначения цвета в Интернете.

Если вы помните, что байт — это 8 бит, каждый цвет или число Hex представляет собой байт. Цвет задаётся в соответствии с интенсивностью его красного, зелёного и синего компонентов. Эти три значения называются триплетом.

Один байт представляет собой число в диапазоне от 00 до FF (в шестнадцатеричной системе счисления) или от 0 до 255 в десятичной системе счисления. Первый байт — красный, творой байт — зелёный, а байт 3 — синий.

Значения hsl работают с диапазонами, как и RGB, но вместо того, чтобы работать со значениями, соответствующими логике интерпретации монитора, значения hsl — это оттенок, насыщенность, светлота. Похоже на значения RGB, но диапазоны отличаются. Эта система основана на колориметрической системе Манселла (он был первым, кто разделил цвет на эти три канала, или создал трёхмерную систему, основанную на математических принципах, привязанных к человеческому зрению).

Трёхмерное представление HSL

Трёхмерное представление HSL

Оттенок вращается на 360 градусов, полный круг, а насыщенность и светлота — это проценты от 0 до 100. Представьте себе колесо, в центре которого находится плотное и насыщенное содержимое. Эта демонстрация довольно хорошо отражает систему.

Если вы не особенно опытны в работе с цветом, hsla() позволяет использовать некоторые довольно простые правила для приятных эффектов для разработчиков. Подробнее об этом — в разделе “Генеративный цвет”.

Именованные цвета

Именованные цвета имеют репутацию неудобных из-за неточных названий.

Самые яркие, "знаменитые" примеры: тёмно-серый на самом деле светлее серого, а лайм и лайм-грин — совершенно разные цвета. Есть даже игра, где нужно угадать название цвета в вебе, созданная Крисом Хеилманном.

В давние времена chucknorris был кроваво-красным цветом (сейчас он поддерживается только в HTML, насколько я могу судить), это был мой любимый цвет.

Именованные цвета могут быть полезны в быстрой демонстрации, но обычно разработчики используют Sass или другие препроцессоры для хранения значений цветов в формате hex, rgba или hsla и сопоставления их с названиями цветов, используемых в компании.

Переменные цвета

Хорошая практика — хранить переменные цвета и никогда не использовать их напрямую, вместо этого отображая их на переменные с более осмысленными именами, вот так:

На момент написания этой статьи в браузерах Microsoft переменных не было. Препроцессоры CSS тоже поддерживают переменные, поэтому вы можете установить переменные типа $brandPrimary или отображение:

Помните, что именование здесь очень важно. Абстрактное именование иногда полезно, чтобы при изменении переменной, которая представляла синий цвет, на оранжевый, вам не пришлось переименовывать все значения цвета. Или, что хуже, повесить табличку с надписью "$blue теперь оранжевый".

currentColor

currentColor — это невероятно полезное значение. Полезно оно для распространения значения цвета на тени, контуры, границы или даже фон. Допустим, вы создали div (внешний, то есть .div-xternal ), а внутри него ещё один, div-internal . Обведём внутренний div оранжевой границей с помощью currentColor :

Это невероятно полезно для систем иконок, либо шрифтовых SVG-иконок. Вы можете установить currentColor в качестве значения по умолчанию для заливки, обводки или цвета, а затем использовать семантически подходящие классы CSS для стилизации.

Препроцессоры

Для настройки цветов отлично подходят препроцессоры CSS. Вот несколько ссылок на документацию по цветовым функциям различных препроцессоров:

А ниже несколько интересных вещей, которые мы можем сделать с помощью Sass:

На самом деле есть десятки способов программного смешивания и изменения цветов с помощью препроцессоров, не будем в них углубляться, но вот отличный интерактивный ресурс, чтобы узнать больше.

Свойства цвета

Как свойство CSS color относится к цвету шрифта. Если вы задаёте цвет для большой области, то используете background-color , а в случае SVG-элемент работаете с fill . Border — это граница вокруг элемента HTML, а stroke — аналог этой границы в SVG.

Прямоугольник и тень текста

Свойства box-shadow и text-shadow принимают значение цвета. Тени текста принимают 2 или 3 значения, h-shadow (горизонтальная тень), v-shadow (вертикальная тень) и необязательный радиус размытия.

Тени прямоугольника принимают 2 или 4 значения, h-shadow , v-shadow , дополнительное расстояние размытия и дополнительное расстояние распространения. Вы также можете обозначить вставку в начале, чтобы создать перевёрнутую тень. На этом сайте есть отличная демонстрация с простым, легко вставляемым кодом.

Градиенты

Линейные градиенты работают, обозначая направление от и до, в зависимости от префикса браузера сверху, снизу, слева, справа, можно задать градусы и радиальный градиент. Затем мы указываем остановки цвета и цвет, которого хотим добиться на каждой остановке. Цвета могут быть и прозрачными:

Синтаксис градиентов не так уж сложно написать, но мне очень нравится работать с этим генератором градиентов, потому что он создаёт сложное свойство фильтра, поддерживая IE6-9. Есть ещё один очень красивый Open Source генератор.

Градиенты также легко пишутся на SVG. По желанию мы можем задать площадь поверхности для градиента. С помощью идентификатора мы определяем блок, на который ссылаемся.

Эти градиенты также поддерживают непрозрачность, поэтому можно добиться красивых эффектов слоя, например, анимировать слои как маску.

Градиентный текст возможен только в webkit. Вот простой код на CSS-Tricks.

Генеративные цвета

В пределах указанных ранее диапазонов вы можете использовать циклы for в любом препроцессоре, или же JavaScript функцию Math.random() и Math.floor() . Здесь нам нужны Math.floor() или Math.ceil() , потому что если не вернуть полные целые числа, то вместо значения цвета получим ошибку. Хорошее эмпирическое правило: не следует обновлять все три значения.

При помощи HSL очень легко переходить от одного цвета к другому, потому что вы знаете, что перебор оттенков от 0 до 360 даст вам полный диапазон. Ещё одна приятная особенность hue-rotate в градусах заключается в том, что поскольку это полный круг, вам не нужно придерживаться диапазона 0–360, можно написать даже -480 или 600 — браузер вас поймёт.

Я использую его, чтобы сгенерировать эти цвета:

А также этот, с другим диапазоном (прокрутите очень быстро):

Ниже я использую Math.random() в значениях rgb, чтобы получить множество цветов в одном диапазоне. Демонстрация написана на React, создаётся впечатление трёхмерности. Я могла бы пройти по нему при помощи for , но хотелось, чтобы цвет был случайным, отражал движение. Здесь нет предела совершенству.

JavaScript

GreenSock выпустили инструмент, позволяющий анимировать относительные значения цвета, что очень полезно: можно захватывать сразу множество элементов и анимировать эти элементы относительно их собственных цветовых координат. Вот несколько демонстрирующих идею черепах. Чтобы увидеть эффект, наведите курсор на черепаху.

Смешение цветов и режимы смешения фонов

Если вы использовали эффекты слоёв в Photoshop, то, вероятно, знакомы с режимами смешивания (наложения). Почти каждый сайт в 90-е годы использовал их (мой тоже). Режимы смешивания и фонового наложения позволяют соединить два разных многослойных изображения, при этом доступно 16 режимов.

Верхнее изображение, или цвет, называется исходным, нижний слой называется конечным. Область между слоями, где происходит смешивание, называется фоном. Изображения смешиваются при помощи довольно простых формул.


Если вы хотите прослыть настоящим занудой, знайте, что формулы для режимов наложения зависят от типа эффекта. Например, multiply — это destination source = backdrop. Другие эффекты — это вариации простой математики с вычитанием, умножением, сложением и делением. Формула линейного эффекта — A+B-1, а эффекта Color Burn — это 1-(1-B)*A.

Вот более обширная документация, а ниже простая демонстрация, иллюстрирующая работу цвета в таких эффектах:

В этой замечательной статье Робин демонстрирует некоторые действительно сложные и впечатляющие эффекты, которых можно добиться с помощью наложения нескольких режимов смешивания. Ниже мы рассмотрим их смешивание с фильтрами.

Фильтры

Фильтры CSS предоставляют множество классных цветовых эффектов, а также возможность взять цветное изображение и сделать его серым. На CSS-Tricks есть замечательный ресурс, который показывает, как они работают, и хорошо поддерживается браузерами. У Беннета Фили вы найдёте хорошую галерею фильтров.

Фильтры и режимы размытия могут работать вместе! Уна Кравец создала этот классный инструмент под названием CSS Gram, комбинируя некоторые эффекты, чтобы создать фильтры из Instagram. В конце есть хорошая документация.

feColorMatrix

В другой статье Уна исследует создание этих изображений через feColorMatrix, — примитива фильтра в SVG, который также может применяться к элементам HTML. Он очень мощный и позволяет точно настроить цвет. Как следует из названия, базовая разметка feColorMatrix использует матрицу значений, а применяется она через её относительный id.

Матрицу можно расширить и отрегулировать оттенок, насыщенность и так далее:

В статье Уны подробно рассматриваются все возможности этого инструмента. Ещё больше информации об этом и многих других сумасшедших цветах SVG, а также об инструментах градиента в книге Амелии Белами-Ройд от O’Reilly или в исследовательской демонстрации Майка Муллани.


Доступность и другие замечания

Цвет проявляется только в отношении с другими цветами. Вы, вероятно, немного знакомы с этим в плане стандартов доступности [для людей с ограничениями по зрению]. Светло-зелёный цвет на чёрном может быть доступным [видимым], но, когда вы меняете фон на белый, зелёный различается плохо.

Доступность цвета можно измерить многими инструментами. Ниже некоторые из моих любимых:

Также очень хорошо с самого начала настроить свою палитру так, чтобы она была доступной [контрастной].

Color Safe — отличный инструмент, который помогает в этом. Как только вы всё подготовите, WAVE (Web Accessibility Tool) поможет оценить веб-страницу.

Цвет и атмосфера

Атмосфера влияет на цвет. Знать это довольно важно, если вы собираетесь создать хоть какую-то иллюзию глубины. Предметы ближе к вам более насыщены и контрастны. Предметы дальше более размыты.

Ландшафт подчёркивает зависимость контраста от расстояния

Ландшафт подчёркивает зависимость контраста от расстояния

Тени не серые, они дополняют цвет света: если свет обладает жёлтым оттенком, тень будет казаться фиолетовой. Это полезно знать, если вы создаёте очень длинные тени.


Нативный ввод цвета

Существует встроенный в браузер селектор цветов, который вы можете использовать, чтобы помочь пользователям выбирать цвета динамически. Такой код:

Отобразит элемент выбора цветов, например такой:


Следует иметь в виду, что в разных браузерах селектор цветов будет отображаться по-разному, как и любой другой встроенный элемент управления.

Этот пен Ноя Блона показывает, как использовать его в сочетании с цветовым фильтром hue в CSS, чтобы выбирать части изображения динамически и изменять цвета. Оставшаяся часть изображения — это градации серого, поэтому она не затрагивается, что довольно умно.

Полезное

Color Highlighter Plugin для Sublime Text я использую, чтобы увидеть, какой цвет интерпретирует браузер. Мне нравится использовать .

Существует несколько различных традиционных комбинаций палитры, а также интернет-ресурсы, которые помогут вам их составить. Вот более научное представление — Paletton или Adobe Color.

Бенджамин Найт написал аналог Adobe Color при помощи d3 на CodePen, инструмент довольно крут и заслуживает внимания.

Если вы хотите, чтобы веб делал за вас тяжёлую работу (а кто этого не хочет?), посмотрите на Coolors, настолько простой, насколько это возможно.

Если вам нужна помощь в интерпретации цветов, и вы хотите быстрый простой инструмент перевода цвета из одной цветовой модели в другую, в энциклопедии цвета ColorHexa вы найдёте преобразования цветов в разные системы, которые только можно придумать.

И для самых занудных цветоманов. Вы можете даже заставить свою консоль выводить цвета для вас. Вот великолепный пен, показывающий, как это работает. Надеюсь, эта статья даст вам отправную точку для экспериментов и понимания.

Продолжить изучение цветов, чтобы стать профессиональным веб-разработчиком, вы можете на наших курсах:

Также вы можете перейти на страницы из каталога, чтобы узнать, как мы готовим специалистов в других направлениях.


Профессии и курсы

Глубина цвета (качество цветопередачи, битность изображения) – термин компьютерной графики, означающий объем памяти в количестве бит, используемых для хранения и представления цвета при кодировании одного пикселя растровой графики или видеоизображения. Часто выражается единицей бит на пиксель (англ. bpp – bits per pixel).

Преимущество индексированных цветов состоит в высоком качестве изображения – широкий цветовой охват сочетается с небольшим расходом памяти.

12-битный цвет цвет кодируется 4 битами (по 16 возможных значений) для каждой R-, G- и B-составляющих, что позволяет представить 4096 (16 х 16 х 16) различных цветов. Такая глубина цвета иногда используется в простых устройствах с цветными дисплеями (например, в мобильных телефонах).

HighColor, или HiColor, разработан для представления всего множества оттенков, воспринимаемых человеческим глазом. Такой цвет кодируется 15 или 16 битами, а именно: 15-битный цвет использует 5 бит для представления красной составляющей, 5 – для зеленой и 5 – для синей, т.е. 25 – 32 возможных значения каждого цвета, которые дают 32 768 (32 × 32 × 32) объединенных цвета. 16-битный цвет использует 5 бит для представления красной составляющей, 5 – для синей и (так как человеческий глаз более чувствителен при восприятии зеленых тонов) 6 бит для представления зеленой – соответственно 64 возможных значения. Всего 65 536 (32 × 64 × 32) цветов.

Truecolor 24-битное изображение. Truecolor предоставляет 16,7 млн различных цветов. Такой цвет наиболее близок человеческому восприятию и удобен для обработки изображений. 24-битный truecolor-цвет использует по 8 бит для представления красной, синей и зеленой составляющих, 256 различных вариантов представления цвета для каждого канала, или всего 16 777 216 цветов (256 × 256 × 256).

Свсрх-Truecolor. В конце 1990-х гг. некоторые графические системы высшего класса начали использовать более 8 бит на канал, например 12 или 16 бит.

В КомпьюАрт № 7'2012 была представлена статья о гармоничных цветовых сочетаниях и закономерностях влияния цвета на восприятие человека, что, несомненно, учитывают в своих проектах современные дизайнеры. Но при работе за компьютером и смешивании цветов на экране монитора возникают специфические проблемы. Дизайнер должен получить на экране монитора или на твердой копии именно те цвет, тон, оттенок и светлоту, которые требуются. Цвета на мониторе не всегда совпадают с природными красками. Очень непросто получить один и тот же цвет на экране, на распечатке цветного принтера и на типографском оттиске. Дело в том, что цвета в природе, на мониторе и на печатном листе создаются абсолютно разными способами.
Для однозначного определения цветов в различных цветовых средах существуют цветовые модели, о которых мы и поговорим в настоящей статье.

Модель RGB

Цветовая модель RGB — самый популярный способ представления графики, который подходит для описания цветов, видимых на мониторе, телевизоре, видеопроекторе, а также создаваемых при сканировании изображений.

Модель RGB используется при описании цветов, получаемых смешиванием трех лучей: красного (Red), зеленого (Green) и синего (Blue). Из первых букв английских названий этих цветов составлено название модели. Остальные цвета получаются сочетанием базовых. Цвета такого типа называются аддитивными, поскольку при сложении (смешивании) двух лучей основных цветов результат становится светлее. На рис. 1 показано, какие цвета получаются при сложении основных.

Рис. 1. Комбинации базовых цветов модели RGB

Рис. 1. Комбинации базовых цветов модели RGB

В модели RGB каждый базовый цвет характеризуется яркостью, которая может принимать 256 значений — от 0 до 255. Поэтому можно смешивать цвета в различных пропорциях, изменяя яркость каждой составляющей. Таким образом, можно получить 256x256x256 = 16 777 216 цветов.

Каждому цвету можно сопоставить код, используя десятичное и шестнадцатеричное представление кода. Десятичное представление — это тройка десятичных чисел, разделенных запятыми. Первое число соответствует яркости красной составляющей, второе — зеленой, а третье — синей. Шестнадцатеричное представление — это три двузначных шестнадцатеричных числа, каждое из которых соответствует яркости базового цвета. Первое число (первая пара цифр) соответствует яркости красного цвета, второе число (вторая пара цифр) — зеленого, а третье (третья пара) — синего.

Для проверки данного факта откройте палитру цветов в CorelDRAW или Photoshop. В поле R введите максимальное значение яркости красного цвета 255, а в поля G и B — нулевое значение. В результате поле образца будет содержать красный цвет, шестнадцатеричный код будет таким: FF0000 (рис. 2).

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Рис. 2. Представление красного цвета в модели RGB: слева — в окне палитры Photoshop, справа — CorelDRAW

Если к красному цвету добавить зеленый с максимальной яркостью, введя в поле G значение 255, получится желтый цвет, шестнадцатеричное представление которого — FFFF00.

Максимальная яркость всех трех базовых составляющих соответствует белому цвету, минимальная — черному. Поэтому белый цвет имеет в десятичном представлении код (255, 255, 255), а в шестнадцатеричном — FFFFFF16. Черный цвет кодируется соответственно (0, 0, 0) или 00000016.

Все оттенки серого цвета образуются смешиванием трех составляющих одинаковой яркости. Например, при значениях R = 200, G = 200, B = 200 или C8C8C816 получается светло­серый цвет, а при значениях R = 100, G = 100, B = 100 или 64646416 — темно­серый. Чем более темный оттенок серого цвета вы хотите получить, тем меньшее число нужно вводить в каждое текстовое поле.

Что же происходит при выводе изображения на печать, как передаются цвета? Ведь бумага не излучает, а поглощает или отражает цветовые волны! При переносе цветного изображения на бумагу используется совершенно другая цветовая модель.

Модель CMYK

При печати на бумагу наносится краска — материал, который поглощает и отражает цветовые волны различной длины. Таким образом, краска выступает в роли фильтра, пропускающего строго определенные лучи отраженного цвета, вычитая все остальные.

Цветовую модель CMYK используют для смешения красок печатающие устройства — принтеры и типографские станки. Цвета этой модели получаются в результате вычитания из белого базовых цветов модели RGB. Поэтому их называют субтрактивными.

Базовыми для CMYK являются следующие цвета:

  • голубой (Cyan) — белый минус красный (Red);
  • пурпурный (Magenta) — белый минус зеленый (Green);
  • желтый (Yellow) — белый минус синий (Blue).

Помимо этих, используется еще и черный цвет, который является ключевым (Key) в процессе цветной печати. Дело в том, что реальные краски имеют примеси, поэтому их цвет не соответствует в точности теоретически рассчитанным голубому, пурпурному и желтому. Смешение трех основных красок, которые должны давать черный цвет, дает вместо этого неопределенный грязно­коричневый. Поэтому в число основных полиграфических красок и внесена черная.

На рис. 3 представлена схема, из которой видно, какие цвета получаются при смешении базовых в CMYK.

Рис. 3. Комбинации базовых цветов модели CMYK

Рис. 3. Комбинации базовых цветов модели CMYK

Следует отметить, что краски модели CMYK не являются столь чистыми, как цвета модели RGB. Этим объясняется небольшое несоответствие базовых цветов. Согласно схеме, представленной на рис. 3, при максимальной яркости должны получаться следующие комбинации цветов:

  • смешение пурпурного (M) и желтого (Y) должно давать красный цвет (R) (255, 0, 0);
  • смешение желтого (Y) и голубого (C) должно давать зеленый цвет (G) (0, 255, 0);
  • смешение пурпурного (M) и голубого (C) должно давать синий цвет (B) (0, 0, 255).

На практике получается несколько иначе, что мы далее и проверим. Откройте диалоговое окно палитры цветов в программе Photoshop. В текстовые поля M и Y введите значение 100%. Вместо базового красного цвета (255, 0, 0) мы имеем красно­оранжевую смесь (рис. 4).

Рис. 4. Пример несоответствия смеси пурпурного и желтого цветов модели CMYK красному цвету модели RGB. Окно палитры Photoshop

Рис. 4. Пример несоответствия смеси пурпурного и желтого цветов модели CMYK красному цвету модели RGB. Окно палитры Photoshop

Теперь в текстовые поля Y и C введите значение 100%. Вместо базового зеленого цвета (0, 255, 0) получается зеленый цвет с небольшим оттенком синего. При задании яркости 100% в полях M и C вместо синего цвета (0, 0, 255) мы имеем синий цвет с фиолетовым оттенком. Более того, не все цвета модели RGB могут быть представлены в модели CMYK. Цветовой охват RGB шире, чем у CMYK.

Основные цвета моделей RGB и CMYK находятся в зависимости, представленной на схеме цветового круга (рис. 5). Эта схема применяется для цветовой коррекции изображений; примеры ее использования рассматривались в КомпьюАрт № 12'2011.

Рис. 5. Схема цветового круга

Рис. 5. Схема цветового круга

Модели RGB и CMYK являются аппаратно зависимыми. Для модели RGB значения базовых цветов определяются качеством люминофора у ЭЛТ или характеристиками ламп подсветки и цветовых фильтров панели у ЖК­мониторов. Если обратиться к модели CMYK, то значения базовых цветов определяются реальными типографскими красками, особенностями печатного процесса и носителя. Таким образом, одинаковое изображение может на различной аппаратуре выглядеть по­разному.

Как отмечалось ранее, RGB является наиболее популярной и часто применяемой моделью для представления цветных изображений. В большинстве случаев изображения подготавливаются для демонстрации через монитор или проектор и для печати на цветных настольных принтерах. Во всех этих случаях необходимо использовать модель RGB.

Замечание

Несмотря на то что в цветных принтерах используются чернила цветовой модели CMYK, чаще всего изображения, подготавливаемые для печати, необходимо преобразовать в модель RGB. Но распечатанное изображение будет выглядеть немного темнее, чем на мониторе, поэтому перед печатью его необходимо осветлить. Величина осветления для каждого принтера определяется опытным путем.

Модель CMYK необходимо применять в одном случае — если изображение готовится к печати на типографском станке. Более того, следует учесть, что модель CMYK не содержит столь же большого числа цветов, как модель RGB, поэтому в результате преобразования из RGB в CMYK изображение может утратить ряд оттенков, которые вряд ли получится восстановить обратным преобразованием. Поэтому старайтесь выполнять преобразование изображения в модель CMYK на конечном этапе работы с ним.

Модель HSB

Модель HSB упрощает работу с цветами, так как в ее основе лежит принцип восприятия цвета человеческим глазом. Любой цвет определяется своим цветовым тоном (Hue) — собственно цветом, насыщенностью (Saturation) — процентом добавления к цвету белой краски и яркостью (Brightness) — процентом добавления черной краски. На рис. 6 показано графическое представление модели HSB.

Рис. 6. Графическое представление модели HSB

Рис. 6. Графическое представление модели HSB

Спектральные цвета, или цветовые тона, располагаются по краю цветового круга и характеризуются положением на нем, которое определяется величиной угла в диапазоне от 0 до 360°. Эти цвета обладают максимальной (100%) насыщенностью (S) и яркостью (B). Насыщенность изменяется по радиусу круга от 0 (в центре) до 100% (на краях). При значении насыщенности 0% любой цвет становится белым.

Яркость — параметр, определяющий освещенность или затемненность. Все цвета цветового круга имеют максимальную яркость (100%) независимо от тона. Уменьшение яркости цвета означает его затемнение. Для отображения этого процесса на модели добавляется новая координата, направленная вниз, на которой откладываются значения яркости от 100 до 0%. В результате получается цилиндр, образованный из серии кругов с уменьшающейся яркостью, нижний слой — черный.

С целью проверки данного утверждения откройте диалоговое окно выбора цвета в программе Photoshop. В поля S и B введите максимальное значение 100%, а в поле H — минимальное значение 0°. В результате мы получим чистый красный цвет солнечного спектра. Этому же цвету соответствует красный цвет модели RGB, его код (255, 0, 0), что указывает на взаимосвязь этих моделей (рис. 7).

Рис. 7. Пример взаимосвязи цветов в моделях HSB и RGB

Рис. 7. Пример взаимосвязи цветов в моделях HSB и RGB

В поле H изменяйте значение угла с шагом 20°. Вы будете получать цвета в том порядке, в каком они расположены в спектре: красный сменится оранжевым, оранжевый желтым, желтый зеленым и т. д. Угол 60° дает желтый цвет (255, 255, 0), 120°— зеленый (0, 255, 0), 180°— голубой (255, 0, 255), 240° — синий (0, 0, 255) и т.д.

Чтобы получить розовый цвет, на языке модели HSB — блеклый красный, необходимо в поле H ввести значение 0°, а насыщенность (S) понизить, например, до 50%, задав максимальное значение яркости (B).

Серый цвет для модели HSB — это сведенные к нулю цветовой тон (H) и насыщенность (S) с яркостью (B) меньше 100%. Вот примеры светло­серого: H = 0, S = 0, B = 80% и темно­серого цветов: H = 0, S = 0, B = 40%.

Белый цвет задается так: H = 0, S = 0, B = 100%, а чтобы получить черный цвет, достаточно снизить до нуля значение яркости при любых значениях тона и насыщенности.

В модели HSB любой цвет получается из спектрального добавлением определенного процента белой и черной красок. Поэтому HSB — очень простая в понимании модель, которую используют маляры и профессиональные художники. У них обычно есть несколько основных красок, а все другие получаются добавлением к ним черной или белой. Однако при смешивании художниками красок, полученных на основе базовых, цвет выходит за рамки модели HSB.

Модель Lab

Модель Lab основана на следующих трех параметрах: L — яркость (Lightness) и два хроматических компонента — a и b. Параметр a изменяется от темно­зеленого через серый до пурпурного цвета. Параметр b содержит цвета от синего через серый до желтого (рис. 8). Оба компонента меняются от –128 до 127, а параметр L — от 0 до 100. Нулевое значение цветовых компонентов при яркости 50 соответствует серому цвету. При значении яркости 100 получается белый цвет, при 0 — черный.

Рис. 8. Графическое представление модели Lab

Рис. 8. Графическое представление модели Lab

Понятия яркости в моделях Lab и HSB нетождественны. Как и в RGB, смешение цветов из шкал a и b позволяет получить более яркие цвета. Уменьшить яркость результирующего цвета можно за счет параметра L.

Рис. 9. Пример взаимосвязи цветов в моделях Lab и RGB

Рис. 9. Пример взаимосвязи цветов в моделях Lab и RGB

Откройте окно выбора цвета в программе Photoshop, в поле яркости L введите значение 50, для параметра a введите наименьшее значение –128, а параметр b обнулите. В результате вы получите сине­зеленый цвет (рис. 9). Теперь попробуйте увеличить значение параметра a на единицу. Обратите внимание: ни в одной модели числовые значения не изменились. Попробуйте, увеличивая значение данного параметра, добиться изменения в других моделях. Скорее всего, у вас получится это сделать при значении 121 (зеленая составляющая RGB уменьшится на 1). Это обстоятельство подтверждает факт того, что модель Lab имеет больший цветовой охват по сравнению с моделями RGB, HSB и CMYK.

В модели Lab яркость полностью отделена от изображения, поэтому в некоторых случаях эту модель удобно использовать для перекраски фрагментов и повышения насыщенности изображения, влияя только на цветовые составляющие a и b. Также возможна регулировка контраста, резкости и других тоновых характеристик изображения за счет изменения параметра яркости L. Примеры коррекции изображения в модели Lab приводились в КомпьюАрт № 3'2012.

Цветовой охват модели Lab шире, чем у RGB, поэтому каждое повторное преобразование из одной модели в другую практически безопасно. Более того, можно перевести изображение в режим Lab, выполнить коррекцию в нем, а затем безболезненно перевести результат обратно в модель RGB.

Модель Lab аппаратно независима, служит ядром системы управления цвета в графическом редакторе Photoshop и применяется в скрытом виде при каждом преобразовании цветовых моделей как промежуточная. Ее цветовой диапазон покрывает диапазоны RGB и CMYK.

Индексированные цвета

С изображением, скачанным из Интернета (как правило в формате GIF) очень часто возникает следующая ситуация. Нарисовать в нем что­либо получится только цветом, отличным от выбранного. Это объясняется тем, что выбранный цвет выходит за рамки цветовой палитры индексированного изображения, то есть этого цвета нет в файле. В результате происходит замена выбранного в палитре цвета на ближайший похожий цвет из цветовой таблицы. Поэтому перед редактированием такого изображения необходимо перевести его в модель RGB.

Читайте также: